Toeplitz determinants related to a discrete Painlevé II hierarchy

Sofia Tarricone

IRMP, Université Catholique de Louvain-la-Neuve

UCLouvain-KULeuven Classical Analysis Seminar

UCLouvain, 18 October 2022

Based on a joint work with Thomas Chouteau (soon on the ArXiv!)

- Backgroud on the case N = 1
- Motivation for the case N > 1

OPUC: Riemann–Hilbert approach

Alternative Lax pair for dPII hierarchy 3

The object of our study For any N > 1, we consider the symbol

$$\varphi^{(N)}[\theta_1,\ldots,\theta_N](z) \coloneqq \varphi(z) = e^{w(z)},$$

with

$$w(z) \coloneqq v(z) + v(z^{-1})$$
 and $v(z) \coloneqq \sum_{j=1}^{N} \frac{\theta_j}{j} z^j, \ \theta_j \in \mathbb{R}, \ z \in S^1.$

We focus on the study of the Toeplitz determinants

$$D_n \coloneqq \det(T_n(\varphi))$$

with $T_n(\varphi)$ being the *n*-th Toeplitz matrix associated to the symbol $\varphi(z)$

$$T_n(\varphi)_{i,j} \coloneqq \varphi_{i-j}, \quad i,j=0,\ldots,n$$

where for every $k \in \mathbb{Z}$, φ_k is the *k*-th Fourier coefficient of $\varphi(z)$, namely

$$\varphi_k = \int_{-\pi}^{\pi} e^{-ik\theta} \varphi(e^{i\theta}) \frac{d\theta}{2\pi}$$
, so that $\sum_{k \in \mathbb{Z}} \varphi_k z^k = \varphi(z)$.

Outline

Introduction

- Backgroud on the case N = 1
- Motivation for the case N > 1

From random permutations...

Consider the set of permutations S_M with uniform distribution, so that for any $\pi_M \in S_M$ we have

$$\mathbb{P}(\pi_M) = \frac{1}{M!}$$

and denote $\ell(\pi_M)$ the length of the longest increasing sub-sequence of π_M .

Example $\pi_5 = \begin{pmatrix} 4 & 3 & 1 & 2 & 5 \end{pmatrix}$ and $\ell(\pi_5) = 3$.

Ulam problem (1961)

Describe the behavior of $\ell(\pi_M)$ for $M \to \infty$.

Theorem (Baik–Deift–Johansson (1999))

$$\lim_{M\to\infty} \mathbb{P}\left(\frac{\ell(\pi_M)-2\sqrt{M}}{M^{1/6}}\leq t\right)=F(t), \quad \text{with } F(t):=\det\left(1-\mathcal{K}_{\mathrm{Ai}}|_{(t,\infty)}\right).$$

...to random partitions

Theorem (Robinson–Schensted correspondence)

$$\textit{RS}: \pi_{\textit{M}} \ni \textit{S}_{\textit{M}} \rightarrow \textit{RS}(\pi_{\textit{M}}) \in \{(\textit{P},\textit{Q}) \in \textit{SYT}_{\textit{M}} \times \textit{SYT}_{\textit{M}}, \textit{sh}(\textit{P}) = \textit{sh}(\textit{Q})\}$$

is a bijection.

Example Consider the permutation $\pi_5 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$. The RS correspondence associate the pair $RS(\pi_5) = (P_5, Q_5)$

$$\emptyset, \emptyset \to \underbrace{4}, \underbrace{1} \to \underbrace{3}_{4}, \underbrace{1}_{2} \to \underbrace{4}_{4}, \underbrace{3}_{3} \to \underbrace{4}_{4}, \underbrace{3}_{3} \to \underbrace{4}_{4}, \underbrace{3}_{3} \to \underbrace{4}_{4}, \underbrace{1}_{2} = \underbrace{1}_{4} \underbrace{4}_{3} \underbrace{1}_{2} \underbrace{1}_{4} \underbrace{4}_{3} \underbrace{1}_{2} \underbrace{1}_{3} \underbrace{4}_{3}, \underbrace{3}_{4} \to \underbrace{4}_{4}, \underbrace{3}_{3} \to \underbrace{4}_{4}, \underbrace{1}_{2} \to \underbrace{4}_{4}, \underbrace{1}_{3} \to \emptyset, \emptyset.$$

$$x_{5} = 5 \qquad x_{4} = 2 \qquad x_{3} = 1 \qquad x_{2} = 3 \qquad x_{1} = 4 \implies SR(P_{5}Q_{5}) = \pi_{5}$$

The Schensted theorem

In particular, if $\lambda(\pi_M) = (\lambda_1(\pi_M) \ge \lambda_2(\pi_M)...)$ is the partition coinciding with sh(P) = sh(Q) in the above correspondence, the Schensted theorem (1961) says

$$\ell(\pi_M) = \lambda_1(\pi_M).$$

Example For π_5 we had $\lambda(\pi_5) = (3 \ge 1 \ge 1)$.

Moreover, the uniform distribution on S_M pushes forward through RS onto the set \mathcal{Y}_M of all partitions of M inducing on it the *Plancherel* measure

$$\mathbb{P}_{\mathsf{PI.}}(\lambda) = \frac{F_{\lambda}^2}{M!}, \text{ with } F_{\lambda} = \#\{P \in \mathsf{SYT}_M, \mathsf{sh}(P) = \lambda\}.$$

In this sense

$$\mathbb{P}(\ell(\pi_M) \leq n) = \mathbb{P}_{\mathsf{Pl.}}(\lambda_1(\pi_M) \leq n).$$

7/29

Poissonized Plancherel measure and Gessel's theorem

On the set of all partitions of any size $\mathcal{Y} = \bigcup_M \mathcal{Y}_M$ one can consider a *Poissonized* version of the Plancherel measure

$$\mathbb{P}_{\mathsf{P.Pl.}}(\lambda) = \mathrm{e}^{-\theta^2} \left(\frac{\theta^{|\lambda|} F_{\lambda}}{|\lambda|!} \right)^2, \text{ where } |\lambda| = \mathsf{weight}(\lambda).$$

Theorem (Gessel's formula)

$$\mathbb{P}_{P.PL}(\lambda_1 \leq n) = e^{-\theta^2} D_{n-1}(\varphi)$$

where $\varphi = \varphi^{(1)} \left[\theta_1 = \theta \right] (z)$.

Remark 1 The result of B–D–J was obtained after the study of asymptotic behavior of these Toeplitz determinants using the RH approach for OPUC and de Poissonization procedure.

Remark 2 This quantity has also a Fredholm determinant representation in terms of a discrete version of the Bessel kernel \rightarrow Giulio's talk!

Borodin's formula

Theorem (Many authors)

For every $n \ge 1$ we have

$$\frac{D_n D_{n-2}}{D_{n-1}^2} = 1 - x_n^2$$

where x_n solves the so called discrete Painlevé II equation, which corresponds to the second order nonlinear difference equation

$$\theta(x_{n+1} + x_{n-1})(1 - x_n^2) + nx_n = 0$$

with initial conditions $x_0 = -1, x_1 = \varphi_1/\varphi_0$.

Remark 1 This result as stated above was proved in different ways from different authors Borodin, Baik, Adler–Van Moerbeke more or less at the same time (2001).

Remark 2 Similar discrete equations appeared previously in Periwal-Schewitz (1990) in the study of some unitary matrix integrals.

・ロット (四) ・ (日) ・ (日)

The continuous limit

Recall the B–D–J result in this context: $\lim_{\theta\to\infty} \mathbb{P}\left(\frac{\lambda_1-2\theta}{\theta^{1/3}} \leq t\right) = F(t)$. Thus by performing the following scaling

$$n = t\theta^{1/3} + 2\theta \iff t = (n - 2\theta)\theta^{-1/3}$$

in the formula for the Toeplitz determinants and take the limit for $heta
ightarrow\infty$

$$\frac{D_n D_{n-2}}{D_{n-1}^2} - 1 = -x_n^2, \qquad x_{n+1} + x_{n-1} = -\frac{nx_n}{\theta(1 - x_n^2)} \\
\xrightarrow{\text{B-D-J}} x_n = (-1)^n \theta^{-1/3} u(t) \qquad \qquad \downarrow x_n = (-1)^n \theta^{-1/3} u(t) \\
\frac{\partial_t^2 \log F(t) = -u^2(t), \qquad u''(t) = 2u^3(t) + tu(t) \\
\xrightarrow{\text{Painlevé II equation}}$$

which recovers the Tracy-Widom formula (1994) for GUE.

Outline

• Motivation for the case *N* > 1

2) OPUC: Riemann-Hilbert approach

3 Alternative Lax pair for dPII hierarchy

Final remarks

Multicritical random partitions

(Okunkov, 2001) Consider now on the set of all partitions the Schur measures

$$\mathbb{P}_{\mathrm{Sc.}}(\lambda) = Z^{-1} s_{\lambda} \left[\theta_{1}, \ldots, \theta_{N}\right]^{2},$$

where s_{λ} can be computed as

$$s_{\lambda}\left[\theta_{1},\ldots,\theta_{N}\right] = \det_{i,j} h_{\lambda_{i}-i+j}\left[\theta_{1},\ldots,\theta_{N}\right], \text{ with } \sum_{k\geq 0} h_{k}z^{k} = e^{\nu(z)}, \text{ and } Z = e^{\sum_{i=1}^{N} \frac{\theta_{i}^{2}}{i}}$$

Remark For N = 1 with $\mathbb{P}_{P.PL}(\lambda) = \mathbb{P}_{Sc.}(\lambda)$ with $\theta_1 = \theta$.

Theorem (Betea–Bouttier–Walsh (2021))

Let
$$\theta_i = (-1)^{i+1} \frac{(N-1)!(N+1)!}{(N-i)!(N+i)!} \theta = (-1)^{i+1} \hat{\theta}_i$$
. Then

$$\lim_{\theta \to \infty} \mathbb{P}_{Sc.}\left(\frac{\lambda_1 - b\theta}{(\theta d)^{\frac{1}{2N+1}}} < t\right) = F_N(t), \quad \text{with} \quad F_N(t) = \det(1 - \mathcal{K}_{\operatorname{Ai}_{2N+1}}|_{(t,\infty)})$$

where $b = \frac{N+1}{N}, d = \binom{2N}{N-1}^{-1}$.

Higher order Tracy-Widom formula

Theorem (Cafasso–Claeys–Girotti (2019)) For every $N \ge 1$ $\partial_t^2 \log F_N(t) = -u^2((-1)^{N+1}t)$

where $u((-1)^{N+1}t)$ is a particular solution of the N-th equation of the Painlevé II hierarchy.

For N = 1, 2, 3 this means that u(t) solves the following ODEs

$$N = 1: \qquad u'' - 2u^3 = tu,$$

$$N = 2: \qquad u'''' - 10u(u')^2 - 10u^2u'' + 6u^5 = -tu,$$

$$N = 3: \qquad u''''' - 14u^2u''' - 56uu'u''' - 70(u')^2u'' - 42u(u'')^2 + 70u^4u'' + 140u^3(u')^2 - 20u^7 = tu$$

where ' denotes the derivative w.r.t. t.

What is left to complete the picture

The family of OPUC of interest

We consider the measure for $z = e^{i\alpha} \in S^1$ given by

$$\mathrm{d}\mu(\alpha) = \varphi(\mathrm{e}^{i\alpha}) \frac{\mathrm{d}\alpha}{2\pi} = \mathrm{e}^{w(\mathrm{e}^{i\alpha})} \frac{\mathrm{d}\alpha}{2\pi}.$$

The family $\{p_n(z)\}_{n\in\mathbb{N}}$ of orthogonal polynomials on the unitary circle (OPUC) w.r.t. the measure is given by

$$p_n(z) = \kappa_n z^n + \ldots \kappa_0, \ \kappa_n > 0$$

such that the following relation holds for any index k, h

$$\int_{-\pi}^{\pi} \overline{p_k(e^{i\alpha})} p_h(e^{i\alpha}) \frac{\mathrm{d}\mu(\alpha)}{2\pi} = \delta_{k,h}.$$

The analogue monic orthogonal polynomials $\pi_n(z)$ are $p_n(z) = \kappa_n \pi_n(z)$.

Relation with the Toeplitz determinants

A very well known formula of $p_n(z)$ in terms of the Toeplitz determinants D_n gives

$$p_n(z) = \frac{1}{\sqrt{D_n D_{n-1}}} \det \begin{pmatrix} \varphi_0 & \varphi_{-1} & \cdots & \varphi_{-n+1} & \varphi_{-n} \\ \varphi_1 & \varphi_0 & \cdots & \varphi_{-n+2} & \varphi_{-n+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \varphi_{n-1} & \varphi_{n-2} & \cdots & \varphi_0 & \varphi_{-1} \\ 1 & z & \cdots & z^{n-1} & z^n \end{pmatrix}, \quad n \ge 1,$$

from which in particular one deduces that the leading coefficient of $p_n(z)$ is related to the ratio of consecutive Toeplitz determinants as

$$\frac{D_{n-1}}{D_n} = \kappa_n^2$$

R–H problem associated to OPUC

For any fixed $n \ge 0$, the function $Y(z) := Y(z, n; \theta_i) : \mathbb{C} \to GL(2, \mathbb{C})$ has the following properties

- (1) Y(z) is analytic for every $z \in \mathbb{C} \setminus S^1$;
- (2) Y(z) has continuous boundary values $Y_{\pm}(z)$ are related for all $z \in S^1$ through

$$Y_{+}(z) = Y_{-}(z)J_{Y}(z), \text{ with } J_{Y}(z) = \begin{pmatrix} 1 & z^{-n}e^{w(z)} \\ 0 & 1 \end{pmatrix};$$

(3) Y(z) is normalized at ∞ as

$$Y(z) \sim \left(I + \sum_{j=1}^{\infty} \frac{Y_j(n, heta_i)}{z^j}\right) z^{n\sigma_3}, \ z o \infty,$$

where σ_3 denotes the Pauli's matrix $\sigma_3 \coloneqq \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Solution of this R–H problem

Theorem (Baik–Deift–Johansson (1999))

The R–H problem admits a unique solution Y(z) written as

$$Y(z) = \begin{pmatrix} \pi_n(z) & \mathcal{C}\left(y^{-n}\pi_n(y)e^{w(y)}\right)(z) \\ -\kappa_{n-1}^2\pi_{n-1}^*(z) & -\kappa_{n-1}^2\mathcal{C}\left(y^{-n}\pi_{n-1}^*(y)e^{w(y)}\right)(z) \end{pmatrix},$$

where $\pi_{n-1}^*(z)$ is defined as the polynomial of the same degree of $\pi_{n-1}(z)$ such that $\pi_{n-1}^*(z) \coloneqq z^n \overline{\pi_{n-1}(\overline{z}^{-1})}$. and (Cf(y))(z) is the Cauchy transform of f

$$\left(\mathcal{C}f(y)\right)(z) \coloneqq \frac{1}{2\pi i} \int_{\mathcal{S}^1} \frac{f(y)}{y-z} \mathrm{d}y.$$

Moreover, $det(Y(z)) \equiv 1$.

Remark This is an extension of the R–H approach to orthogonal polynomials on the real line formulated by Fokas–Its–Kitaev (1991).

(日)

Important symmetry property

For every fixed $n \ge 0$, the unique solution Y(z) of the R–H problem satisfies

$$Y(z) = \sigma_3 Y(0)^{-1} Y(z^{-1}) z^{n\sigma_3} \sigma_3,$$

where the matrix $Y(0) = Y(0, n; \theta_i)$ is given for any $n \ge 1$ by

$$Y(\mathbf{0}, \mathbf{n}; \theta_i) = \begin{pmatrix} \mathbf{x}_n & \kappa_n^{-2} \\ -\kappa_{n-1}^2 & \mathbf{x}_n \end{pmatrix},$$

with $x_n := \pi_n(0)$ and κ_n is the leading coefficient of $p_n(z)$.

Remark Since det $Y(0, n; \theta_i) = 1$ for every $n \ge 1$ we have

$$\frac{\kappa_{n-1}^2}{\kappa_n^2} = 1 - x_n^2$$

Corollary (Formula for the Toeplitz determinants) For every $n \ge 1$ we have $\frac{D_{n-2}D_n}{D_{n-1}^2} = 1 - x_n^2$.

Transformation of the R–H problem

Now the function

$$\Psi(z,n;\theta_i) := \begin{pmatrix} 1 & 0 \\ 0 & \kappa_n^{-2} \end{pmatrix} Y(z,n;\theta_j) \begin{pmatrix} 1 & 0 \\ 0 & z^n \end{pmatrix} e^{w(z)\frac{\sigma_3}{2}}$$

satisfies the following properties :

- (1) $\Psi(z)$ is analytic for every $z \in \mathbb{C} \setminus \{S^1 \cup \{0\}\};$
- (2) $\Psi(z)$ has continuous boundary values $\Psi_{\pm}(z)$ related for all $z \in S^1$ by

$$\Psi_+(z) = \Psi_-(z)J_0, \quad J_0 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

(3) $\Psi(z)$ has asymptotic behavior near 0 given by

$$\Psi(z) \sim \begin{pmatrix} 1 & 0 \\ 0 & \kappa_n^{-2} \end{pmatrix} Y(0) \left(I + \sum_{j=1}^{\infty} z^j \widetilde{Y}_j(n) \right) \begin{pmatrix} 1 & 0 \\ 0 & z^n \end{pmatrix} e^{w(z)\frac{\sigma_3}{2}}, \quad z \to 0.$$

(4) $\Psi(z)$ has asymptotic behavior near ∞ given by

$$\Psi(z)\sim \begin{pmatrix} 1 & 0\\ 0 & \kappa_n^{-2} \end{pmatrix} \left(I+\sum_{j=1}^\infty \frac{Y_j(n)}{z^j}\right) \begin{pmatrix} z^n & 0\\ 0 & 1 \end{pmatrix} \mathrm{e}^{w(z)\frac{\sigma_3}{2}}, \quad |z|\to\infty.$$

System of equations for Ψ

Proposition

$$\Psi(z, n+1) = U(z, n)\Psi(z, n), \quad \partial_z \Psi(z, n) = T(z, n)\Psi(z, n)$$

with

T

$$U(z,n) := \begin{pmatrix} z + x_n x_{n+1} & -x_{n+1} \\ -(1 - x_{n+1}^2) x_n & 1 - x_{n+1}^2 \end{pmatrix} = \sigma_+ z + U_0(n),$$

$$T(z,n) := T_1(n) z^{N-1} + T_2(n) z^{N-2} + \dots + T_{2N+1}(n) z^{-N-1} = \sum_{k=1}^{2N+1} T_k z^{N-k},$$

where $T_1(n) = \frac{\theta_N}{2} \sigma_3.$

Remark The symmetry property of Y(z) gives in turn for T(z, n) that

$$T(z^{-1}, n) = -z^{2} \left(K(n)T(z, n)K(n)^{-1} - nz^{-1}I_{2} \right)$$

with $K(n) := \begin{pmatrix} 1 & 0 \\ 0 & \kappa_{n}^{-2} \end{pmatrix} Y(0, n)\sigma_{3} \begin{pmatrix} 1 & 0 \\ 0 & \kappa_{n}^{2} \end{pmatrix}$, $T_{j}(n) = -K(n)T_{2N+2-j}(n)K(n)^{-1}$,
for $j = 1, ..., N$ and
which in terms of $T_{j}(n)$ reads as \longrightarrow
$$T_{N+1}(n) = -K(n)T_{N+1}(n)K(n)^{-1} + nI_{2}.$$

Exploiting the compatibility condition

The compatibility condition of the system for Ψ gives

$$\sigma_+ = T(n+1,z)U(n,z) - U(n,z)T(n,z)$$

with T(n, z) satisfying the prescribed symmetry

looking at the coefficients of each power z^k for $k = N, \ldots, -1$

we find

- A system of discrete (in *n*) equations for $T_k^{ij}(n), i, j \in \{1, 2\}$ for k = 1, ..., N + 1 that determines all of them in terms of $x_{n\pm j}, j = -N, ..., N$ recursively (on *k*) starting from the initial condition for $T_1(n)$.
- Plugging the form obtained for the last coefficient $T_{N+1}(n)$ into the equation for $T_{N+1}(n)$ given from the symmetry, a nonlinear 2N order discrete equation for x_n which is the N-th equation of the discrete Painlevé II hierarchy.

The case N = 1

The Lax matrix T(z, n) results as follows

$$T(n,z) = \frac{\theta_1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \frac{1}{z} \begin{pmatrix} n & -\theta_1 x_{n+1} \\ -\theta_1 v_n x_{n-1} & 0 \end{pmatrix} + \frac{\theta_1}{z^2} \begin{pmatrix} \frac{1}{2} - x_n^2 & x_n \\ v_n x_n & x_n^2 - \frac{1}{2} \end{pmatrix}$$

where $v_n = 1 - x_n^2$ and (as already known from Borodin's formula) we have that x_n satisfies the discrete Painlevé II equation

$$x_{n+1} + x_{n-1} = \frac{nx_n}{\theta_1(x_n^2 - 1)}.$$

Remark The Lax pair obtained here however is different from the one obtained by Borodin.

The case N = 2

The Lax matrix T(z, n) results as follows

$$\begin{split} T(z,n) &= z \frac{\theta_2}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} \frac{\theta_1}{2} & -\theta_2 x_{n+1} \\ -\theta_2 x_{n-1} v_n & -\frac{\theta_1}{2} \end{pmatrix} + \\ & \frac{1}{z} \begin{pmatrix} n - \theta_2 x_{n-1} x_{n+1} v_n & -\theta_1 x_{n+1} - \theta_2 (v_{n+1} x_{n+2} - x_n x_{n+1}^2) \\ (-\theta_1 x_{n-1} - \theta_2 (v_{n-1} x_{n-2} - x_n x_{n-1}^2)) v_n & \theta_2 x_{n-1} x_{n+1} v_n \end{pmatrix} \\ & + \frac{1}{z^2} \begin{pmatrix} -\theta_2 v_n (x_n x_{n-1} + x_n x_{n+1}) + \frac{\theta_1}{2} (v_n - x_n^2) & -\theta_2 (v_n x_{n-1} + x_n^2 x_{n+1}) \\ -\theta_2 (v_n x_{n+1} + x_n^2 x_{n-1}) v_n & \theta_2 v_n (x_n x_{n-1} + x_n x_{n+1}) - \frac{\theta_1}{2} (v_n - x_n^2) \end{pmatrix} \\ & + \frac{\theta_2}{z^3} \begin{pmatrix} \frac{1}{2} - x_n^2 & x_n \\ v_n x_n & x_n^2 - \frac{1}{2} \end{pmatrix}. \end{split}$$

and this time x_n satisfies the 4th order nonlinear discrete equation

$$nx_{n} + \theta_{1}v_{n}(x_{n+1} + x_{n-1}) + \theta_{2}v_{n}\left(x_{n+2}v_{n+1} + x_{n-2}v_{n-1} - x_{n}(x_{n+1} + x_{n-1})^{2}\right) = 0,$$

which is known as the second member of the discrete Painlevé II hiearchy.

Final statement

Theorem (T. – Chouteau)

For any fixed $N \ge 1$, for the Toeplitz determinants D_n , $n \ge 1$, we have

$$\frac{D_n D_{n-2}}{D_{n-1}^2} = 1 - x_n^2$$

where now x_n solves the 2N order nonlinear difference equation

$$nx_n + \left(v_n + v_n \textit{Perm}_n - 2x_n \Delta^{-1} \left(x_n - (\Delta + I)x_n \textit{Perm}_n
ight)
ight) L^N(0) = 0$$

where L is a discrete recursion operator that acts as follows

$$L(u_n) := (x_{n+1} (2\Delta^{-1} + I) ((\Delta + I) x_n Perm_n - x_n) + v_{n+1} (\Delta + I) - x_n x_{n+1}) u_n$$

and $L(0) = \theta_N x_{n+1}$. Here $v_n := 1 - x_n^2$, Δ denotes the difference operator $\Delta : u_n \to u_{n+1} - u_n$ and Perm_n is the transformation

$$\begin{array}{rcl} \textit{Perm}_n : & \mathbb{C}\left[(x_j)_{j \in [[0,2n]]}\right] & \longrightarrow & \mathbb{C}\left[(x_j)_{j \in [[0,2n]]}\right] \\ & P\left((x_{n+j})_{-n \leqslant j \leqslant n}\right) & \longmapsto & P\left((x_{n-j})_{-n \leqslant j \leqslant n}\right). \end{array}$$

Connection with the Cresswell–Joshi Lax pair

Cresswell and Joshi (1998) introduced the discrete Painlevé II hierarchy as the compatibility condition of the system

$$\Phi(z, n+1) = L(z, n)\Phi(z, n)$$
$$\frac{\partial}{\partial z}\Phi(z, n) = M(z, n)\Phi(z, n)$$

where $L(z, n) := \begin{pmatrix} z & x_n \\ x_n & 1/z \end{pmatrix}$ and $M(z, n) := \begin{pmatrix} A_n(z) & B_n(z) \\ C_n(z) & -A_n(z) \end{pmatrix}$ with A_n, B_n and C_n written in integer powers of z (from z^N to z^{-N}).

Proposition (T.–Chouteau)

The C-J Lax pair and the one found in our work are related through

$$\Phi(z,n) := \sigma_3 \begin{pmatrix} z^{-n+3/2} & 0 \\ 0 & z^{-n+1/2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -x_{n-1} & 1 \end{pmatrix} \Psi(z^2,n-1).$$

The other continuous limits

Recall the B–B–W result for N = 2: it says $\lim_{\theta \to \infty} \mathbb{P}_{Sc.}\left(\frac{\lambda_1 - \frac{3}{2}\theta}{(4^{-1}\theta)^{1/5}} \le t\right) = F_2(t)$. Thus by performing the following scaling

$$n = t \left(\frac{\theta}{4}\right)^{1/5} + \frac{3}{2}\theta \quad \Longleftrightarrow \quad t = \left(n - \frac{3}{2}\theta\right)\theta^{-\frac{1}{5}}4^{\frac{1}{5}}.$$

in the formula for the Toeplitz determinants and taking the limit for $heta
ightarrow\infty$

which recovers the result from Cafasso–Claeys–Girotti for N = 2. **Remark** For N = 3 it works as well by taking $x_n = (-1)^n \left(\frac{\theta}{15}\right)^{-1/7} u(t)$, with $t = (n - \frac{3}{4}\theta) \theta^{-1/7} 15^{1/7}$ and $\theta_1 = \theta, \theta_2 = \frac{2\theta}{5}, \theta_3 = \frac{\theta}{15}$.

Open problems

- Give a formal proof for any *N* that the *N*-th equation of the discrete Painlevé II hierarchy converges to the *N*-th equation of the classical Painlevé II hierarchy.
- Understand at the level of the difference between the recursion operators used here and the ones used in Cresswell–Joshi.

Thank you!

э

・ロト ・回ト ・ヨト ・ヨト