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The object of our study
For any N ≥ 1, we consider the symbol

φ(N) [θ1, . . . , θN ] (z) := φ(z) = ew(z),

with

w(z) := v(z) + v(z−1) and v(z) :=
N∑

j=1

θj

j
z j , θj ∈ R, z ∈ S1.

We focus on the study of the Toeplitz determinants

Dn := det(Tn(φ))

with Tn(φ) being the n-th Toeplitz matrix associated to the symbol φ(z)

Tn(φ)i,j := φi−j , i , j = 0, . . . ,n

where for every k ∈ Z, φk is the k -th Fourier coefficient of φ(z), namely

φk =

∫ π

−π

e−ikθφ(eiθ)
dθ
2π

, so that
∑
k∈Z

φk zk = φ(z).

S. TARRICONE Toeplitz determinants, OPUC and dPII hierarchy UCLouvain, 18 October 2022 3 / 29



Outline

1 Introduction
Backgroud on the case N = 1
Motivation for the case N > 1

2 OPUC: Riemann–Hilbert approach

3 Alternative Lax pair for dPII hierarchy

4 Final remarks

S. TARRICONE Toeplitz determinants, OPUC and dPII hierarchy UCLouvain, 18 October 2022 4 / 29



From random permutations...

Consider the set of permutations SM with uniform distribution, so that for any
πM ∈ SM we have

P(πM) =
1

M!

and denote ℓ(πM) the length of the longest increasing sub-sequence of πM .

Example π5 =
(
4 3 1 2 5

)
and ℓ(π5) = 3.

Ulam problem (1961)
Describe the behavior of ℓ(πM) for M → ∞.

Theorem (Baik–Deift–Johansson (1999))

lim
M→∞

P

(
ℓ(πM)− 2

√
M

M1/6 ≤ t

)
= F (t), with F (t) := det

(
1 −KAi|(t,∞)

)
.
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...to random partitions

Theorem (Robinson–Schensted correspondence)

RS : πM ∋ SM → RS(πM) ∈ {(P,Q) ∈ SYTM × SYTM , sh(P) = sh(Q)}

is a bijection.

Example Consider the permutation π5 =

(
1 2 3 4 5
4 3 1 2 5

)
.

The RS correspondence associate the pair RS(π5) = (P5,Q5)

∅, ∅ → 4 , 1 →
3
4 ,

1
2 →

1
3
4 ,

1
2
3 →

1 2
3
4 ,

1 4
2
3 →

1 2 5
3
4 ,

1 4 5
2
3 = (P5,Q5).

1 2 5
3
4 ,

1 4 5
2
3 →

1 2
3
4 ,

1 4
2
3 →

1
3
4
,

1
2
3
→

3
4 ,

1
2 → 4 , 1 → ∅, ∅.

x5 = 5 x4 = 2 x3 = 1 x2 = 3 x1 = 4 =⇒ SR(P5Q5) = π5.
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The Schensted theorem

In particular, if λ(πM) = (λ1(πM) ≥ λ2(πM) . . . ) is the partition coinciding with
sh(P) = sh(Q) in the above correspondence, the Schensted theorem (1961)
says

ℓ(πM) = λ1(πM).

Example For π5 we had λ(π5) = (3 ≥ 1 ≥ 1).

Moreover, the uniform distribution on SM pushes forward through RS onto the
set YM of all partitions of M inducing on it the Plancherel measure

PPl.(λ) =
F 2
λ

M!
, with Fλ = #{P ∈ SYTM , sh(P) = λ}.

In this sense
P(ℓ(πM) ≤ n) = PPl.(λ1(πM) ≤ n).
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Poissonized Plancherel measure and Gessel’s
theorem
On the set of all partitions of any size Y =

⋃
M YM one can consider a

Poissonized version of the Plancherel measure

PP.Pl.(λ) = e−θ2
(
θ|λ|Fλ

|λ|!

)2

, where |λ| = weight(λ).

Theorem (Gessel’s formula)

PP.Pl. (λ1 ≤ n) = e−θ2
Dn−1(φ)

where φ = φ(1) [θ1 = θ] (z).

Remark 1 The result of B–D–J was obtained after the study of asymptotic
behavior of these Toeplitz determinants using the RH approach for OPUC and
de Poissonization procedure.
Remark 2 This quantity has also a Fredholm determinant representation in
terms of a discrete version of the Bessel kernel → Giulio’s talk!
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Borodin’s formula

Theorem (Many authors)
For every n ≥ 1 we have

DnDn−2

D2
n−1

= 1 − x2
n

where xn solves the so called discrete Painlevé II equation, which
corresponds to the second order nonlinear difference equation

θ(xn+1 + xn−1)(1 − x2
n ) + nxn = 0

with initial conditions x0 = −1, x1 = φ1/φ0.

Remark 1 This result as stated above was proved in different ways from
different authors Borodin, Baik, Adler–Van Moerbeke more or less at the
same time (2001).
Remark 2 Similar discrete equations appeared previously in Periwal-Schewitz
(1990) in the study of some unitary matrix integrals.
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The continuous limit

Recall the B–D–J result in this context: limθ→∞ P
(

λ1−2θ
θ1/3 ≤ t

)
= F (t).

Thus by performing the following scaling

n = tθ1/3 + 2θ ⇐⇒ t = (n − 2θ)θ−1/3.

in the formula for the Toeplitz determinants and take the limit for θ → ∞

DnDn−2

D2
n−1

− 1 = −x2
n , xn+1 + xn−1 = − nxn

θ(1 − x2
n )

B–D–J

y xn = (−1)nθ−1/3u(t)

y xn = (−1)nθ−1/3u(t)

∂2
t logF (t) = −u2(t), u′′(t) = 2u3(t) + tu(t)

Painlevé II equation

which recovers the Tracy-Widom formula (1994) for GUE.
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Multicritical random partitions
(Okunkov, 2001) Consider now on the set of all partitions the Schur measures

PSc.(λ) = Z−1sλ [θ1, . . . , θN ]
2
,

where sλ can be computed as

sλ [θ1, . . . , θN ] = det
i,j

hλi−i+j [θ1, . . . , θN ] , with
∑
k≥0

hk zk = ev(z), and Z = e
∑N

i=1
θ2

i
i .

Remark For N = 1 with PP.Pl.(λ) = PSc.(λ) with θ1 = θ.

Theorem (Betea–Bouttier–Walsh (2021))

Let θi = (−1)i+1 (N−1)!(N+1)!
(N−i)!(N+i)! θ = (−1)i+1θ̂i . Then

lim
θ→∞

PSc.

(
λ1 − bθ

(θd)
1

2N+1
< t

)
= FN(t), with FN(t) = det(1 −KAi2N+1 |(t,∞))

where b = N+1
N ,d =

(
2N

N − 1

)−1

.
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Higher order Tracy-Widom formula

Theorem (Cafasso–Claeys–Girotti (2019))
For every N ≥ 1

∂2
t logFN(t) = −u2((−1)N+1t)

where u((−1)N+1t) is a particular solution of the N-th equation of the Painlevé
II hierarchy.

For N = 1,2,3 this means that u(t) solves the following ODEs

N = 1 : u′′ − 2u3 = tu,

N = 2 : u′′′′ − 10u(u′)2 − 10u2u′′ + 6u5 = −tu,

N = 3 : u′′′′′′ − 14u2u′′′′ − 56uu′u′′′ − 70(u′)2u′′ − 42u(u′′)2 + 70u4u′′

+ 140u3(u′)2 − 20u7 = tu

where ′ denotes the derivative w.r.t. t .
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What is left to complete the picture

N=1

N>1

Discrete

PP.Pl. (λ1 ≤ n) = e−θ2
Dn−1(φ) with

φ = φ(1) [θ1 = θ] (z) and

Dn−2Dn/D2
n−1 = 1 − x2

n

with xn solving

dPII : θ(xn+1+xn−1)(1−x2
n )+nxn = 0.

PSc. (λ1 ≤ n) = e−
∑N

i θ̂2
i /iDn−1(φ)

with φ = φ(N)
[
θ̂1, . . . , θ̂N

]
(z) and

what is the recursion relation for Dn?

Continuous

lim
θ→∞

PP.Pl.

(
λ1 − 2θ

θ
1
3

≤ t
)

= F (t)

and
∂2

t logF (t) = −u2(t)

with u solving

PII : u′′(t) = 2u3(t) + tu(t).

limθ→∞ PSc.

(
λ1−bθ

(dθ)
1

2N+1
≤ t
)

= FN(t)

and ∂2
t logFN(t) = −u2((−1)N+1t)

with u solving the N-th higher order
analogue of PII.
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The family of OPUC of interest

We consider the measure for z = eiα ∈ S1 given by

dµ(α) = φ(eiα)
dα
2π

= ew(eiα) dα
2π

.

The family {pn(z)}n∈N of orthogonal polynomials on the unitary circle (OPUC)
w.r.t. the measure is given by

pn(z) = κnzn + . . . κ0, κn > 0

such that the following relation holds for any index k ,h∫ π

−π

pk (eiα)ph(eiα)
dµ(α)

2π
= δk,h.

The analogue monic orthogonal polynomials πn(z) are pn(z) = κnπn(z).
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Relation with the Toeplitz determinants

A very well known formula of pn(z) in terms of the Toeplitz determinants Dn
gives

pn(z) =
1√

DnDn−1
det


φ0 φ−1 . . . φ−n+1 φ−n
φ1 φ0 . . . φ−n+2 φ−n+1
...

...
. . .

...
...

φn−1 φn−2 . . . φ0 φ−1
1 z . . . zn−1 zn

 , n ≥ 1,

from which in particular one deduces that the leading coefficient of pn(z) is
related to the ratio of consecutive Toeplitz determinants as

Dn−1

Dn
= κ2

n
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R–H problem associated to OPUC

For any fixed n ≥ 0, the function Y (z) := Y (z,n; θi) : C → GL(2,C) has the
following properties
(1) Y (z) is analytic for every z ∈ C \ S1;
(2) Y (z) has continuous boundary values Y±(z) are related for all z ∈ S1

through

Y+(z) = Y−(z)JY (z), with JY (z) =
(

1 z−new(z)

0 1

)
;

(3) Y (z) is normalized at ∞ as

Y (z) ∼

I +
∞∑
j=1

Yj(n, θi)

z j

 znσ3 , z → ∞,

where σ3 denotes the Pauli’s matrix σ3 :=

(
1 0
0 −1

)
.
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Solution of this R–H problem

Theorem (Baik–Deift–Johansson (1999))
The R–H problem admits a unique solution Y (z) written as

Y (z) =
(

πn(z) C
(
y−nπn(y)ew(y)

)
(z)

−κ2
n−1π

∗
n−1(z) −κ2

n−1C
(
y−nπ∗

n−1(y)e
w(y)

)
(z)

)
,

where π∗
n−1(z) is defined as the polynomial of the same degree of πn−1(z)

such that π∗
n−1(z) := znπn−1 (z̄−1). and (Cf (y))(z) is the Cauchy transform of f

(Cf (y)) (z) :=
1

2πi

∫
S1

f (y)
y − z

dy .

Moreover, det(Y (z)) ≡ 1.

Remark This is an extension of the R–H approach to orthogonal polynomials
on the real line formulated by Fokas–Its–Kitaev (1991).
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Important symmetry property
For every fixed n ≥ 0, the unique solution Y (z) of the R–H problem satisfies

Y (z) = σ3Y (0)−1Y (z−1)znσ3σ3,

where the matrix Y (0) = Y (0,n; θi) is given for any n ≥ 1 by

Y (0,n; θi) =

(
xn κ−2

n
−κ2

n−1 xn

)
,

with xn := πn(0) and κn is the leading coefficient of pn(z).

Remark Since detY (0,n; θi) = 1 for every n ≥ 1 we have

κ2
n−1

κ2
n

= 1 − x2
n

Corollary (Formula for the Toeplitz determinants)

For every n ≥ 1 we have Dn−2Dn

D2
n−1

= 1 − x2
n .
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Transformation of the R–H problem
Now the function

Ψ(z,n; θi) :=

(
1 0
0 κ−2

n

)
Y (z,n; θj)

(
1 0
0 zn

)
ew(z)σ3

2 .

satisfies the following properties :
(1) Ψ(z) is analytic for every z ∈ C \ {S1 ∪ {0}};
(2) Ψ(z) has continuous boundary values Ψ±(z) related for all z ∈ S1 by

Ψ+(z) = Ψ−(z)J0, J0 =

(
1 1
0 1

)
.

(3) Ψ(z) has asymptotic behavior near 0 given by

Ψ(z) ∼
(

1 0
0 κ−2

n

)
Y (0)

I +
∞∑
j=1

z j Ỹj(n)

(1 0
0 zn

)
ew(z)σ3

2 , z → 0.

(4) Ψ(z) has asymptotic behavior near ∞ given by

Ψ(z) ∼
(

1 0
0 κ−2

n

)I +
∞∑
j=1

Yj(n)
z j

(zn 0
0 1

)
ew(z)σ3

2 , |z| → ∞.
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System of equations for Ψ
Proposition

Ψ(z,n + 1) = U(z,n)Ψ(z,n), ∂zΨ(z,n) = T (z,n)Ψ(z,n)

with

U(z,n) :=
(

z + xnxn+1 −xn+1
−(1 − x2

n+1)xn 1 − x2
n+1

)
= σ+z + U0(n),

T (z,n) := T1(n)zN−1 + T2(n)zN−2 + ...+ T2N+1(n)z−N−1 =
2N+1∑
k=1

Tk zN−k ,

where T1(n) = θN
2 σ3.

Remark The symmetry property of Y (z) gives in turn for T (z,n) that

T (z−1, n) = −z2 (K (n)T (z, n)K (n)−1 − nz−1I2
)

with K (n) :=
(

1 0
0 κ−2

n

)
Y (0, n)σ3

(
1 0
0 κ2

n

)
,

which in terms of Tj(n) reads as −→

Tj(n) = −K (n)T2N+2−j(n)K (n)−1,

for j = 1, . . . ,N and

TN+1(n) = −K (n)TN+1(n)K (n)−1 + nI2.
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Exploiting the compatibility condition
The compatibility condition of the system for Ψ gives

σ+ = T (n + 1, z)U(n, z)− U(n, z)T (n, z)

with T (n, z) satisfying the prescribed symmetryy
looking at the coefficients of each power zk for k = N, . . . ,−1y

we find
A system of discrete (in n) equations for T ij

k (n), i , j ∈ {1,2} for
k = 1, . . . ,N + 1 that determines all of them in terms of
xn±j , j = −N, . . . ,N recursively (on k ) starting from the initial condition for
T1(n).
Plugging the form obtained for the last coefficient TN+1(n) into the
equation for TN+1(n) given from the symmetry, a nonlinear 2N order
discrete equation for xn which is the N-th equation of the discrete
Painlevé II hierarchy.
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The case N = 1

The Lax matrix T (z,n) results as follows

T (n, z) =
θ1

2

(
1 0
0 −1

)
+

1
z

(
n −θ1xn+1

−θ1vnxn−1 0

)
+

θ1

z2

( 1
2 − x2

n xn

vnxn x2
n − 1

2

)
where vn = 1 − x2

n and (as already known from Borodin’s formula) we have
that xn satisfies the discrete Painlevé II equation

xn+1 + xn−1 =
nxn

θ1(x2
n − 1)

.

Remark The Lax pair obtained here however is different from the one
obtained by Borodin.
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The case N = 2

The Lax matrix T (z,n) results as follows

T (z, n) = z
θ2

2

(
1 0
0 −1

)
+

(
θ1
2 −θ2xn+1

−θ2xn−1vn − θ1
2

)
+

1
z

(
n − θ2xn−1xn+1vn −θ1xn+1 − θ2(vn+1xn+2 − xnx2

n+1)(
−θ1xn−1 − θ2(vn−1xn−2 − xnx2

n−1)
)

vn θ2xn−1xn+1vn

)

+
1
z2

(
−θ2vn(xnxn−1 + xnxn+1) +

θ1
2 (vn − x2

n ) −θ2(vnxn−1 + x2
n xn+1)

−θ2(vnxn+1 + x2
n xn−1)vn θ2vn(xnxn−1 + xnxn+1)−

θ1
2 (vn − x2

n )

)

+
θ2

z3

(
1
2 − x2

n xn

vnxn x2
n − 1

2

)
.

and this time xn satisfies the 4th order nonlinear discrete equation

nxn + θ1vn (xn+1 + xn−1) + θ2vn

(
xn+2vn+1 + xn−2vn−1 − xn(xn+1 + xn−1)

2
)
= 0,

which is known as the second member of the discrete Painlevé II hiearchy.
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Final statement
Theorem (T. – Chouteau)
For any fixed N ≥ 1, for the Toeplitz determinants Dn,n ≥ 1, we have

DnDn−2

D2
n−1

= 1 − x2
n

where now xn solves the 2N order nonlinear difference equation

nxn +
(
vn + vnPermn − 2xn∆

−1 (xn − (∆ + I)xnPermn)
)

LN(0) = 0

where L is a discrete recursion operator that acts as follows

L(un) :=
(
xn+1

(
2∆−1 + I

)
((∆ + I) xnPermn − xn) + vn+1 (∆ + I)− xnxn+1

)
u,

and L(0) = θNxn+1. Here vn := 1 − x2
n , ∆ denotes the difference operator

∆ : un → un+1 − un and Permn is the transformation

Permn : C
[
(xj)j∈[[0,2n]]

]
−→ C

[
(xj)j∈[[0,2n]]

]
P ((xn+j)−n⩽j⩽n) 7−→ P ((xn−j)−n⩽j⩽n) .
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Connection with the Cresswell–Joshi Lax pair

Cresswell and Joshi (1998) introduced the discrete Painlevé II hierarchy as
the compatibility condition of the system

Φ(z,n + 1) = L(z,n)Φ(z,n)
∂

∂z
Φ(z,n) = M(z,n)Φ(z,n)

where L(z,n) :=
(

z xn
xn 1/z

)
and M(z,n) :=

(
An(z) Bn(z)
Cn(z) −An(z)

)
with An, Bn

and Cn written in integer powers of z (from zN to z−N ).

Proposition (T.–Chouteau)
The C–J Lax pair and the one found in our work are related through

Φ(z,n) := σ3

(
z−n+3/2 0

0 z−n+1/2

)(
1 0

−xn−1 1

)
Ψ(z2,n − 1).

S. TARRICONE Toeplitz determinants, OPUC and dPII hierarchy UCLouvain, 18 October 2022 26 / 29



The other continuous limits
Recall the B–B–W result for N = 2: it says limθ→∞ PSc.

(
λ1− 3

2 θ

(4−1θ)1/5 ≤ t
)
= F2(t).

Thus by performing the following scaling

n = t
(
θ

4

)1/5

+
3
2
θ ⇐⇒ t =

(
n − 3

2
θ

)
θ−

1
5 4

1
5 .

in the formula for the Toeplitz determinants and taking the limit for θ → ∞
DnDn−2

D2
n−1

− 1 = −x2
n , nxn + θ1vn (xn+1 + xn−1)

+θ2vn

(
xn+2vn+1 + xn−2vn−1 − xn(xn+1 + xn−1)

2
)
= 0

B–B–W

y xn = (−1)n
(

θ

4

)−1/5
u(t)

y xn = (−1)n
(

θ

4

)−1/5
u(t) θ1 = θ, θ2 =

θ

4

∂2
t logF2(t) = −u2(t), u′′′′ − 10u(u′)2 − 10u2u′′ + 6u5 = −tu

2nd eq. of the Painlevé II hierarchy

which recovers the result from Cafasso–Claeys–Girotti for N = 2.
Remark For N = 3 it works as well by taking xn = (−1)n

(
θ
15

)−1/7
u(t), with

t =
(
n − 3

4θ
)
θ−1/7151/7 and θ1 = θ, θ2 = 2θ

5 , θ3 = θ
15 .
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Open problems

Give a formal proof for any N that the N-th equation of the discrete
Painlevé II hierarchy converges to the N-th equation of the classical
Painlevé II hierarchy.
Understand at the level of the difference between the recursion operators
used here and the ones used in Cresswell–Joshi.
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Thank you!
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