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Integrable probability via Riemann—Hilbert problems

Riemann-Hilbert
methods.
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Probabilistic models. Classical integrable
systems.
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@ Introduction: sine vs Airy processes
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G(aussian) U(nitary) E(nsamble)
GUE is the random matrix ensemble defined by taking on the set of square Hermitian
matrices of size N the probability distribution

P(M)aM = e~ "™ /2,
N

where Zy denotes the partition function.

X+xt

Remark A square matrix of size N such that M = =5~ where

Xnk ~ N(0,1) + iN(0, 1), are i.i.d. with

X2
N(0,1) = e~ 2 Gaussian distribution

1
Ver
is distributed as in GUE.

Problem Study the eigenvalues of GUE and their limiting behavior for N — oc.

1
Point processes on R.
| . . | .

05 i 05 05 \ 05

Eigenvalues of a GUE matrix (scaled by 2+/N), N = 50. N = 50 points taken with uniform distribution in [—1, 1].
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Eigenvalues behavior

The eigenvalues of a GUE matrix are a determinantal point process (on R).

1
Meaning : for any kK < N Borel subsets A; C R,j = 1,..., k pairwise disjoint, the
expected number of distinct ordered eigenvalues k-tuples (A1, ..., A\«) s.t. Ai € A;is

given by
mk(A1 X o0 X Ak) = / / det KN(X,,X]) dX1 . ka.
A Ak 1<i,j<k

*pk )(x1 ,--+» X)) correlation function

where the correlation kernel Ky is explicitely written in terms of the Hermite
polynomials.

0%

Remark The large N Iimiting behavior of the eigenvalues
density of GUE matrices p1 (x)/N converges to the Wigner
semicircle law.
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Bulk vs edge behavior large N limit

[Gaudin - Metha, Forrester 1993] For N — oo then
o the limiting behavior of Ky in the bulk of the spectrum is

1/2
_ X y sin 2wi(x—y)u
Nd(x Ky ( x — X +7)—>K X, :/ du,
(Nd(x0)) N( o+ Nd(xo) 0 Nd(xo) L ( y)| _1/26

sine kernel

o the limiting behavior of Kj near the edge of the spectrum is

—2/3 X y Ai [T .
N~ Ky (2+ W’2+W) - K (x,y)_/0 Ai(x 4+ u)Ai(y + u)du.
Airy kernel

Remark Ai(x) is a real solution of the Airy equation

v (x) = xv(x)

that can be written as Ai(x) = L ["* cos (g + xt) at.
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Sine and Airy determinantal point processes

For a given correlation kernel, we can associate a (self-adjoint) integral operator K on
L3(R) s.t.

k1) = | Kxy)f(y)ay.
R
[Soshnikov, 2000] Hermitian locally trace class operator K on L2(R) with kernel K(-, )

defines a determinantal point process on R if and only if 0 < IC < 1. If the
corresponding point process exists it is unique.

1
The sine and Airy kernel define two determinantal point processes. They are
considered universal since they describe also limiting behavior in other models
~- free fermions at zero temperature;
~ random partitions and permutations;

~» percolation models.
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Gap probabilities

The gap probability is the probability to find no points in a given subset of R.

A foundamental result from the theory of DPPs says that for any Borel subset B C R
(such that K| is trace-class) then the gap probability for B is given by the Fredholm
determinant

k
P(#5=0)=1 +Z - 1) det K(xi, x;)dx1 ... dxx = det(1 — K|g).

i
k>1 Bk =

Remark Of particular interest for the sine and Airy DPPs are
F(s) = det (1 - ICSin|(7s/27r,s/2Tr)) and  G(s) = det(1 — K*|(5.oc))
which describe respectively in the GUE setting

Jim P ({(VNAPYYL ¢ (~s/2r, 5/2m)) = F(s),
Jim P ((A%&,’E - JzW) (\@NVG) < s) — G(s).
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Tracy-Widom formula

The Fredholm determinant G(s) satisfies

2

9 105 G(s) = ~(s)

where q is the Hastings-McLeod solution of the Painlevé Il equation, i.e. it solves

q"(s) = sq(s) +2¢°(s)
together with the boundary condition

q(s) ~ Ai(s) for s — +oo.

Remark In particular

G(s) = exp (— /:oo(r - s)qz(r)dr)

and G(s) is called Tracy-Widom distribution.
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TW distribution and 500 samples of maximum
rescaled eigenvalues of GUE matrices
N = 20.
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Jimbo-Miwa-Mori-Sato formula

The Fredholm determinant F(s) satisfies
d d o
4554s log F(s) =v'(s)
where v is a solution of the Painlevé V o-form equation, i.e. it solves

(s +4(sv' —v)(sv' — v+ (V)?) =0,

together with boundary condition

Ws)=—1s+O(s), 50,

Remark In particular

F(s) = exp (/OS @dx) .
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Painlevé equations in a nutshell

e [Picard, 1889 - Painlevé, 1900 - Gambier, 1910] Painlevé equations are 6
nonlinear second order ODEs which do not have movable branch points and
generically do not admit solutions in terms of classical special functions — their
solutions are called Painlevé transcendents.

e [Jimbo - Miwa - Ueno, 1981] Every Painlevé equation admits (at least) one
isomonodromic Lax pair

VAL _

AN DA 1) DALY OB\ D)
O e 7 )
st. ot oy T AN, B ] =0

w = B(\, W(A, 1) is equivalent to the Painlevé equation,

and it has an Hamiltonian formulation related to the so-called o-forms.
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Common structures

e They both have integral representations

1/2
sin _ 2mixu _ —2miyu . +oo
K (x,y)_[1/2e e ¥ du KA‘(x,y):/ Ai(X + U)AI(y + u)du.
0

e Thus their integral operators can both be decomposed as
Ko™ = F*x(-1/2,1/2F
for F being the Fourier transform and
X(—1/2,1/2) the projection on the interval
(=1/2,1/2).
e They are both of integrable IIKS type

’CAi :AX(O7OO)A*

for A being the Airy transform and x(o,)
the projection on the interval (0, co).

I .
K(x,y) = %)i(y), with 7 T(x)g(x) = 0.
In particular
. eI'7\'Xe—ll7ry _ e—iwxehry . . . .
s = i Ai(x)Ai — Ai'(x)Ai
K*(x,y) = 27i(x —y) ) KM(x,y) = (x) (y)i_y (x) (Y)
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Its-1zergin-Korepin-Slavnov theory

[Its - Izergin - Korepin - Slavnov, 1991] The resolvent of an integrable operator K is
characterized through the solution of a 2 x 2 matrix-valued Riemann—Hilbert problem
(X, J) where

JO) = 1= 27if(\)G" (A), A€ £

~+ Suppose that there is explicit dependence on a deformation parameter s,
K — Ks = K(x, y; s) so that the operator Ks is trace-class. Then the logarithmic
derivative of the associated Fredholm determinant
dslog det (1 — Kis) = —Trpzs) ((1 - /cs)—‘aszcs)
can be as well characterized by the solution of the Riemann—Hilbert.

Jr Y+
S v *
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Outline

a Sine and Airy kernel at finite temperature
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Deformation of the kernels

~ For a smooth function w : R — [0, 1] fast decaying to zero at —oo, the deformed Airy

kernel
+o0o

Kiatxoy) = [ w(@mite+ s+ 2)Aily + 2+ $)dz

—0o0

and the associated Fredholm determinant G (s) = det(1 — Ki's|(0,400))-

~ For Schwartz function w : R — [0, 1], we consider the deformed sine kernel

Kirty) = [ w)e

— o

and the associated Fredholm determinant Fi,(s) = det (1 — K3 |(—s,s))-

Remark They both define new DPPs.
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Their appearences

The deformed Airy kernel together with the analogue deformed sine kernel have been
found in multiple models for specific choices of the weight function w.

e [Dean - Ledoussal - Majumdar - Schehr, 2018] Here w(r) = (1 + e~ ")~

w(r) = (1 + e **° =)= The limiting behavior of the positions of a system of
free fermions at finite temperature trapped with certain class of potentials
(V(x) ~ x2") in the bulk / edge («, A are proportional to the inverse temperature).

e [Johansson, 2008, Lietchy - Wang, 2018] Here w is essentially the same as
above. The limiting behavior of the eigenvalues in the Moshe-Neurberg-Shapiro
model in the bulk / edge.

e [Bothner - Little, 2022] Here w(r) = ®(so~"'(r 4+ 1)) — ®(so " (r — 1)) with
®(z) = # ffoo e‘yzdy (and o a parameter of the model). The limiting (weak

non-hermiticity limit) behavior of the real parts of eigenvalues of the Complex
Elliptic Ginibre ensemble in the bulk / edge.
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Integrable structures (again)

K5 and Ky s factorize again as their zero temperature versions
KCir = F*weF, and Ky = AiwAs,

where w;s denotes the multiplication operator by w(5;) and As is the s-shifted Airy
transform.

1

Thanks to that, composing with the projection operators and exploiting
det(1 — AB) = det(1 — BA)
we have

Fu(s) = det (1 - \/Wszcsi"\/ws) , and Gu(s) = det (1 - m/c;ww)

where /ws denotes the multiplication operator with a square root of the function w(z;)
and K2 acts through the s-shifted Airy kernel K*(x + s,y + s).

~» They can both studied by R-H method!
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© Recent results on FT Airy and sine
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Generalization of the Tracy-Widom formula

[Amir - Corwin - Quastel, 2011] Generalization of the Tracy-Widom formula as

%IogGw(s): —/RQDZ(r; )W (r)ar

where ¢ is solution of the so called integro-differential Painlevé Il equation

2
%@(Z; s) = (z +s+ 2/ o2(r; s)w’(r)dr) ©(z; 5).
R
with ¢(z; 8) ~ Ai(z + s) per s — +oo pointwise in z.
Remark For w = x(0,1-0) then ¢(0; s) = q(s) and this goes back to the TW formula.
(0,400)

[Amir - Corwin - Quastel, 2011] The narrow wedge solution of the
stochastic PDE named as Kardar-Parisi-Zhang .*

@ |

Orh(X, T) = %a)%h(x, T) - %(axh(x, T)? +4(X, T)

where £(X, T) is a Gaussian space-time white noise. [Takeuchi - Sano, 2018]:

turbolent liquid cristals.
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Connection with KdV

[Cafasso - Claeys - Ruzza, 2021] For every w within the class, the function
u(x, t) = 0% log Gw(x, t) + £ for Gu(x, t) the deformed Fredholm determinant

associated to
/3 KA

Wi xt—1

(B3 83,
with wi(\) = w(?/3)), solves the Korteweg-de Vries equation

iU + 2udxU + %8§u =0.

Remark For w = x(0,+), the Tracy-Widom formula gives

u(x, t) = —t PP (—xt= %) + 2%

which is an instance of the self-similarity relation between the Painlevé Il equation and
the KdV equation.
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Generalization of the Jimbo-Miwa-Mori-Sato formula
Theorem (Claeys - T., 2023)
For every s > 0, we have the identity

05805 log Fu(S) = / AW (N)o(; 8)y(X; 8)dA,
where ¢, 1 solve the (Zakharov-Shabat) system of equations

Bed(N; 8) = ING(N, ) — /¢u@wwwwu@

2ris

Betb(\; 5) = Awwmwwmmum—mwxa

27is

with \ — 400 asymptotics ¢(\; 8) ~ e*,1(\; 8) ~ e .

Remark If w is even, then

05505 log Fu(s) = / v’ ( YO(—A; 8)dA,
where ¢ solves the integro-differential equation
/szﬁz(u: )W (n)dp p(—X; 5)-
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Reduction to Painlevé V
Back to the case w(r) = X(~1.1) w'(r) = 6_%(r) -4
Then our integro-differential equations reduce to
LR WS SRy R DR R a1\ _2(1 1
o (g9) =200 (219) s (7 (-29) - (29)) 0 (729)

and by defining

we recover the system
xv' = v¥(u— 13), xu' = xu—2v(u—1)>?

implying that u solves the Painlevé V equation

po U U u(ud) e U1
YT T 2(u—1) + () 2u(u—1)°
Moreover, the JMMS formula is recovered by v/(s) = —1¢ (1;8) ¢ (—1;9) .
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Connection with a new PDE

Let W : R — C be smooth and decaying fast at +oo, such that the even function
w(\) = W()\? — y) is a Schwartz function.

With a change of variable we have

F () = det (1 - ’C;i,?y>|[_§,2i]) = det (1 - /Cf/iv;,s\[—uz,uz]) = Qw(y,s)

T

with wy s(¢) = W ("ZCZ - y) .

52

Theorem (Claeys - T., 2023)
The function g = qw = —2 log Fw(y, s) solves the PDE

0s0,
0 (229) = o(a") - 1.

and o = ow = log Fu(y, s) solves the PDE

050y0)? = 4950 (—25050,0 + 20,0 — (Ds0y0)?) .
y

Remark For the specific choice W(r) = ﬁ, this result was found in the original

paper of [lIts - I1zergin - Korepin - Slavnov, 1991].




Initial boundary value problem for o

Theorem (Claeys, T. 2023)

Letf:R — C be C> and decaying fast at —oo, such that f(y — .2) is a Schwartz
function for all y € R. Then the initial value problem for the o-PDE with initial data

1
lim —ow(y.s) = f(y)
is solved by ow(y, s) = log Qw(y, s), with

W(r)= -2 /oo f'(—=u® — r)du.

Remark Notice that the W, which can be interpreted as scattering data, and the initial
data f are related by a very simple integral transformation.
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About the method

e Construct the IIKS 2 x 2 matrix-valued Riemann—Hilbert problem
(X =R, J = JA*") exploiting the structure of the kernels built respectively with

vectors
A x, 1) = Vw(d) FE (), fan(n s, y) = VW) (),
Gu' (N x, 1) = VW(X) Ger (). gu"(X8,y) = VWG, (V).

e Construct from its solution © = ©(X; x, t) and ¥ = W(; s, y), which give
respectively the Lax pairs

3O = B(\; x,1)© sV = M(); s, y)¥
80 = C(\; x, 1)© Dy, W=L(\s,y)¥
| I—
=95+2)\8y

st. B —8C+[B,Cl=0 < KAV st dsL— Dy,M+[L,M] =0 « q— PDE.
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Final remarks

e Other kernels of integrable type can be treated at the same way ~~ finite
temperature Bessel in progress.

e The structure of Hankel composition operator of these kernels also can be
exploited to use Riemann—Hilbert problems to study their Fredholm determinants
and connect them to integrable equations ~~ work of [Bothner, 2022].

e Other than gap probabilities (alias Fredholm determinants) we can also study
other quantities related to the DPPs Janossy densities : they corresponds to
Darboux transformations of the Riemann—Hilbert problems / integrable systems
behind ~ for the Airy case [Claeys - Glesner - Ruzza - T., 2023].
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Thank you!

Integrability of sine
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