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DPP on the real line
⇝ X ⊂ R is locally finite if for every B ⊂ R bounded then #{X ∩ B} < ∞. Then a point process
on R is a probability measure on the space of all locally finite configurations of R.
⇝ In other words, studying the point process means studying the counting functions, random
variables defined for any Borel subset B ⊂ R as

#B : Conf(R) → N, #B(X) = #{X ∩ B}.

⇝ A point process admits correlation functions ρk , k ≥ 1 if the multiplicative statistics of the
counting functions of any k pairwise disjoint Borel subset Aj , j = 1, . . . , k can be computed by

E

( k∏
i=1

#Ai

)
=

∫
A1

· · ·
∫

Ak

ρk (x1, . . . , xk )dx1 . . . dxk .

Remark [Lenard, 1973 − 75] studied the problem of defining a point process via its correlation
functions.

⇝ A determinantal point process is a point process with correlation functions given by

ρk (x1, . . . , xk ) =
k
det
i,j=1

(
K (xi , xj )

)
for K (·, ·) : R2 → C an Hermitian kernel.
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The Airy and sine kernel

For a given correlation kernel, we can associate a (self-adjoint) integral operator K on L2(R) s.t.

Kf (x) =
∫
R

K (x , y)f (y)dy .

[Soshnikov, 2000] Hermitian locally trace class operator K on L2(R) with kernel K (·, ·) defines a
determinantal point process on R if and only if 0 ≤ K ≤ 1. If the corresponding point process
exists it is unique.

↓

The sine and Airy kernels are functions of two variables (x , y) ∈ R2 defined respectively as

K sin(x , y) =
eπix e−πiy − e−πix eπiy

2πi(x − y)
=

∫ 1/2

−1/2
e2πi(x−y)udu

(
=

sin(π(x − y))
π(x − y)

)
,

K Ai(x , y) =
Ai(x)Ai′(y)− Ai(y)Ai′(x)

x − y
=

∫ +∞

0
Ai(x + u)Ai(y + u)du.

They both define determinantal point processes on the real line with almost surely an infinite
number of particles.
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Gap probabilities

By gap probability we mean the probability to find no points in a given subset of R.

A foundamental result from the theory of DPPs says that for any Borel subset B ⊂ R (such that
K|B is trace-class) then the gap probability for B is given by the Fredholm determinant

P (#B = 0) = 1 +
∑
k≥1

(−1)k

k!

∫
Bk

k
det
i,j=1

K (xi , xj )dx1 . . . dxk = det(1 −K|B).

Remark Of particular interest for the sine and Airy DPPs are the following gap probabilities

F (s) = det
(

1 −Ksin|(−s,s)

)
and G(s) = det(1 −KAi|(s,∞)).
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GUE: bulk vs edge behavior

The Gaussian Unitary Ensemble is built up by considering the set of Hermitian N × N matrices,
together with

P(M)dM =
1

ZN
e− tr M2/2dM,

↓

The eigenvalues of GUE matrices are described by a determinantal point process where the
correlation kernel KN is written in terms of Hermite polynomials.

[Gaudin - Metha,Forrester 1993] In the large N limit, the behavior of the eigenvalues’ correlation
kernels is

Bulk

(Nd(x0))
−1KN

(
x0 +

x
Nd(x0)

, x0 +
y

Nd(x0)

)
↓ N → ∞

K sin(x , y)

Edge

N−2/3KN

(
2 +

x
N2/3

, 2 +
y

N2/3

)
↓ N → ∞

K Ai(x , y)
In particular

lim
N→∞

P
(
{
√

NλGUE
i }N

i=1 /∈ (−s, s)
)
= F (s), lim

N→∞
P
((

λGUE
max −

√
2N
)(√

2N1/6
)
≤ s
)
= G(s).
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The deformed Airy and sine kernel

⇝ For a smooth function w : R → [0, 1] fast decaying to zero at −∞, the deformed Airy kernel

K Ai
w,s(x , y) =

∫ +∞

−∞
w(z)Ai(x + s + z)Ai(y + z + s)dz

and the associated Fredholm determinant Gw (s) = det(1 −KAi
w,s|(0,+∞)).

⇝ For a smooth, integrable function w : R → [0, 1], we consider the deformed sine kernel

K sin
w (x , y) =

∫ ∞

−∞
w(u)e2πi(x−y)udu

and the associated Fredholm determinant Fw (s) = det
(
1 −Ksin

w |(−s,s)
)
.

Remark They both define new DPPs.
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And their appearences

The deformed Airy kernel together with the analogue deformed sine kernel have been found in
multiple models for specific choices of the weight function w .

• [Dean - Ledoussal - Majumdar - Schehr, 2018] Here w(r) = (1 + e−αr )−1

w(r) = (1 + e−λ(4r2−1))−1. The limiting behavior of the positions of a system of free
fermions at finite temperature trapped with certain class of potentials (V (x) ∼ x2n) in the bulk
/ edge (α, λ are proportional to the inverse temperature).

• [Johansson, 2008, Lietchy - Wang, 2018] Here w is essentially the same as above. The
limiting behavior of the eigenvalues in the Moshe-Neurberg-Shapiro model in the bulk / edge.

• [Bothner - Little, 2022] Here w(r) = Φ(sσ−1(r + 1))− Φ(sσ−1(r − 1)) with
Φ(z) = 1√

π

∫ z
−∞ e−y2

dy . The limiting (weak non-hermiticity limit) behavior of the real parts of
eigenvalues of the Complex Elliptic Ginibre ensemble in the bulk / edge.

Aim : studying the functions Fw (s),Gw (s).
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Its-Izergin-Korepin-Slavnov theory

An integral operator K acting on L2(Σ),Σ ⊂ R is said of integrable IIKS form when its kernel can
be written in the form

K (x , y) =
f⃗⊤(x)g⃗(y)

x − y
, with f⊤(x)g(x) = 0,

for some (k )vector-valued functions f⃗ (x), g⃗(x).

[Its - Izergin - Korepin - Slavnov, 1991] The resolvent of such an operator K is characterized
through the solution of a k × k matrix-valued Riemann–Hilbert problem (Σ, J) where

J(x) = I − 2πif (x)g⊤(x).

Moreover, suppose there is explicit dependence on a parameter s, K → Ks = K (x , y ; s) and the
operator Ks is trace-class. Then the logarithmic derivative of the associated Fredholm determinant

∂s log det (1 −Ks) = −TrL2(Σ)

(
(1 −Ks)

−1∂sKs

)
can be as well characterized by the solution of the Riemann–Hilbert.

R+
Ψ−

Ψ+J
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Tracy-Widom formulas for the gap probabilities

Remark Both Ksin and KAi are integrable IIKS operators and thus the Fredholm determinants
F (s) and G(s) can be studied via the Riemann–Hilbert method.

[Jimbo-Miwa-Mori-Sato, 1980]

The Fredholm determinant F (s) satisfies

F (s) = exp

(∫ πs

0

ν(x)
x

dx
)
,

where ν is a solution of the Painlevé V σ-form
equation, i.e. it solves

(sν′′)2 + 4(sν′ − ν)(sν′ − ν + (ν′)2) = 0,

together with boundary condition

ν(s) = −
1
π

s + O(s2), s → 0.

[Tracy-Widom, 1994]

The Fredholm determinant G(s) satisfies

G(s) = exp

(
−
∫ +∞

s
(r − s)u2(r)dr

)
where u is the Hastings-McLeod solution of the
Painlevé II equation, i.e. it solves

u′′(s) = su(s) + 2u3(s)

together with the boundary condition

u(s) ∼ Ai(s) for s → +∞.
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Factorization property

Both KAi,Ksin can be factorized in a useful way. Respectively

Ksin = F∗χ(−1/2,1/2)F and KAi = Aχ(0,∞)A∗

for F being the Fourier transform, χ(−1/2,1/2) the projection on the interval (−1/2, 1/2) and A
being the Airy transform and χ(0,∞) the projection on the interval (0,∞).
Similarly for Ksin

w |(−s,s) and KAi
w,s|(0,∞) replacing the projections by multiplications by w and

composing with the appropriate projection.

Remark Thanks to that we have

Fw (s) = det
(

1 −
√

wsKsin√ws

)
, and Gw (s) = det

(
1 −

√
wKAi

s
√

w
)

where
√

ws denotes the multiplication operator with a square root of the function w( .
2s ) and KAi

s
acts through the s-shifted Airy kernel K Ai(x + s, y + s). ⇝ They can both studied by R-H method!
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Generalization of Tracy-Widom formulas for the deformed versions

[Claeys - T., 2023+]

∂ss∂s log Fw (s) = 2
∫
R
λw ′(λ)ϕ(λ, s)ϕ(−λ, s)dλ,

where ϕ solves

∂sϕ(λ, s) = 2iπλϕ(λ, s)

+
i

2πs

∫
R
ϕ2(µ, s)w ′(µ)dµϕ(−λ, s),

with λ → ∞ asymptotics ϕ(λ, s) ∼ e2πisλ.

⇝ [Bothner - Little, 2022] found an alternative
formulation.

[Amir - Corwin - Quastel, 2011]

∂2
s logGw (s) = −

∫
R
φ2(λ, s)w ′(λ)dλ,

where φ solves

∂2
sφ(λ, s) = (λ+ s)φ(λ, s)

+ 2
∫
R
φ2(λ, s)w ′(λ)dλφ(λ, s).

with φ(λ, s) ∼ Ai(λ+ s) for s → +∞
pointwise in λ.

⇝ [Cafasso - Claeys - Ruzza, 2021]
rederived the formula by R-H method.
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Thinning the Airy DPP

The thinned shifted Airy determinantal point process Pw
Ais

is constructed as follows.

For every random configuration ξ in PAis , a configuration ξw in Pw
Ais

is built by independently
eliminating a particle ξj in the configuration ξ with probability 1 − w(ξj ) and by keeping it with
probability w(ξj ):

x

w(x)

1

ξ

ξσ

Remark We choose w so that
√

wKAi
s
√

w is trace-class.
⇝ The probability of having no particles in the thinned process is given by
det(1 −

√
wKAi

s
√

w) = Gw (s).
⇝ Moreover, the thinned process Pw

Ais
has a. s. # particles < ∞.
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Jànossy densities of the thinned Airy DPP

For a given set V = {v1, . . . , vm}, we can then define Janossy densities of the thinned shifted Airy
point process

Jw (V ; s) = 1 +
∞∑

n=1

(−1)n

n!

∫
Rn

ρs(λ1, . . . , λn, v1, . . . , vm)
m∏

i=1

w(λi )dλi .

One can then show that Jw (V ; s) factorizes as

Jw (V ; s) = det(1 −
√

wKAi
s
√

w) det
1≤k,h≤m

(LAi
w,s(vk , vh)) = Fw (s) det

1≤k,h≤m
(LAi

w,s(vk , vh))

where LAi
w,s is the kernel of the operator LAi

w,s defined as

LAi
w,s := KAi

s

(
1 − wKAi

s

)−1
.

Remark We notice that this kernel is explicitely written

LAi
w,s(λ, µ) =

∫ +∞

s
φ(λ, s′)φ(µ, s′) ds′ =

φ(λ, s)φ′(µ, s)− φ′(λ, s)φ(µ, s)
λ− µ

,

where φ denotes the previous solution of the integro-differential Painlevé II equation.
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Darboux transformations of the integro-differential Painlevé II equation
[Claeys - Glesner - Ruzza - T., 2023] We have

∂2
s log Jw (V ; s) =

∫
R
φ(λ, s;V )2

(
−w ′(λ) +

m∑
i=1

2
(
1 − w(λ)

)
λ− vi

)
dλ = u(s,V ) +

s
2
.

Here φ(λ, s;V ) solves the Stark equation with potential u(s,V ) given above[
∂2

s + 2u(s,V )− s
]
φ(λ, s;V ) = λφ(λ, s;V ),

with asymptotic behavior for λ → ∞ in terms of the Airy function.

Remark
We have that φ(λ, s) = φ(λ, s; ∅) the solution of the integro-differential PII.

Moreover, φ(λ, s;V ) is obtained by an explicit Darboux transformation of φ(λ, s; ∅):

φ(λ, s;V ) =

1 −
m∑

i,j=1

(
L−1(s,V )

)
j,i

z − vj
φ(vi , s; ∅)∂sφ(vj , s; ∅)

φ(λ, s; ∅)

+

 m∑
i,j=1

(
L−1(s,V )

)
j,i

z − vj
φ(vi , s; ∅)φ(vj , s; ∅)

 ∂sφ(λ, s; ∅).
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Thank you!
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