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Background on sine vs Airy kernels

The sine and Airy kernels are functions of two variables (x , y) ∈ R2 defined
respectively as

K sin(x , y) =
sin(π(x − y))
π(x − y)

, and K Ai(x , y) =
∫ +∞

0
Ai(x + u)Ai(y + u)du.

The corresponding integral operators are denoted by Ksin and KAi.

[Soshnikov, 2000] Hermitian locally trace class operator K on L2(R) with kernel K (·, ·)
defines a determinantal point process on R with

ρk (ξ1, . . . , ξk ) =
k
det
i,j=1

(K (ξi , ξj))

if and only if 0 ≤ K ≤ 1. If the corresponding point process exists it is unique.

↓

Ksin and KAi define the sine and Airy DPPs on R.
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GUE: bulk vs edge behavior

The Gaussian Unitary Ensemble is built up by taking the set of Hermitian N × N
matrices, together with

P(M)dM =
1

ZN
e− tr M2/2dM,

↓

The eigenvalues of GUE matrices are described by a determinantal point process
where the correlation kernel KN is written in terms of Hermite polynomials.

In the large N limit, the behavior of the eigenvalues’ correlation kernels is

Bulk

(Nd(x0))
−1KN

(
x0 +

x
Nd(x0)

, x0 +
y

Nd(x0)

)
↓ N → ∞

K sin(x , y)

Edge

N−2/3KN

(
2 +

x
N2/3 , 2 +

y
N2/3

)
↓ N → ∞

K Ai(x , y)
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Their common structures

• They are both of integrable IIKS type

K (x , y) =
f⃗ ⊤(x)g⃗(y)

x − y
, with f⃗ ⊤(x)g⃗(x) = 0.

In particular

K sin(x , y) =
eiπx e−iπy − e−iπx eiπy

2πi(x − y)
, K Ai(x , y) =

Ai(x)Ai′(y)− Ai′(x)Ai(y)
x − y

.

• They both have integral representations

K sin(x , y) =
∫ 1/2

−1/2
e2πixue−2πiyudu K Ai(x , y) =

∫ +∞

0
Ai(x + u)Ai(y + u)du.

• Thus their integral operators can both be decomposed as

Ksin = F∗χ(−1/2,1/2)F

for F being the Fourier transform and
χ(−1/2,1/2) the projection on the interval

(−1/2, 1/2).

KAi = Aχ(0,∞)A∗

for A being the Airy transform and χ(0,∞)

the projection on the interval (0,∞).
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The JMMS and TW formulas

Of particular interest for the sine and Airy DPPs are the following gap probabilities
expressed in terms of Fredholm determinants

F (s) = det
(

1 −Ksin|(−s,s)

)
and G(s) = det(1 −KAi|(s,∞)).

[Jimbo-Miwa-Mori-Sato, 1980]

The Fredholm determinant F (s) satisfies

F (s) = exp

(∫ πs

0

ν(x)
x

dx
)
,

where ν is a solution of the Painlevé V
σ-form equation, i.e. it solves

(xν′′)2 + 4(xν′ − ν)(xν′ − ν + (ν′)2) = 0,

together with boundary condition

ν(x) = − 1
π

x + O(x2), x → 0.

[Tracy-Widom, 1994]

The Fredholm determinant G(s) satisfies

G(s) = exp

(
−
∫ +∞

s
(r − s)u2(r)dr

)
where u is the Hastings-McLeod solution of
the Painlevé II equation, i.e. it solves

u′′(s) = su(s) + 2u3(s)

together with the boundary condition

u(s) ∼ Ai(s) for s → +∞.
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Deformation of the Airy kernel

For a weight function w : R → [0, 1] in a certain class, s ∈ R, a deformation of the Airy
kernel is built as

K Ai
w,s(x , y) =

∫ +∞

−∞
w(z)Ai(x + s + z)Ai(y + z + s)dz.

For some specific choice of w this is often called the finite temperature Airy kernel.

The associated integral operator KAi
w,s is s.t. Gw (s) = det(1 −KAi

w,s|(0,+∞)) is well
defined.

Remark [Amir - Corwin - Quastel, 2011] The probability distribution function of the
Hopf-Cole solution h = h(X ,T ) = − log Z (X ,T ) of the KPZ equation

∂T h =
1
2
∂2

X h − 1
2
(∂X h)2 + ξ, ξ = ξ(X ,T ) is a Gaussian space-time white noise

with narrow wedge initial condition Z (X , 0) = δ0(X ) is written in terms of Gw (s), for
w(z) = wKPZ (z) = y

y−e−(T/2)1/3z
.
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Integrability results

1. [Amir - Corwin - Quastel, 2011] A generalization of the Tracy–Widom formula for
Gw (s) = det(1 −KAi

w,s|(0,+∞)) (with w = wKPZ ), which reads as

d2

ds2 lnGw (s) = −
∫
R
φ2(r ; s)w ′(r)dr

where φ solves the integro-differential Painlevé II equation

∂2

∂s2φ(z; s) =
(

z + s + 2
∫
R
φ2(r ; s)w ′(r)dr

)
φ(z; s).

with φ(z; s) ∼ Ai(z + s) for s → +∞ pointwise in z.

Remark For w = χ(0,+∞) one gets back φ(0; s) = u(s) and the TW formula.

2. [Cafasso - Claeys - Ruzza, 2021] The function uw (x , t) = ∂2
x logGw (x , t) + x

2t for
Gw (x , t) the deformed Fredholm determinant associated to t2/3K Ai

wt ,xt−1(t2/3·, t2/3·),
with wt(λ) = w(t2/3λ), solves the Korteweg-de Vries equation

∂tuw + 2uw∂x uw +
1
6
∂3

x uw = 0.
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Other appearences

The deformed Airy kernel together with the analogue deformed sine kernel have been
found in multiple models for specific choices of the weight function w .

• [Johansson, 2008, Lietchy - Wang, 2018] Here w(r) = (1 + e−αr )−1

w(r) = (1 + e−λ(4r2−1))−1. The limiting behavior of the eigenvalues in the
Moshe-Neurberg-Shapiro model in the bulk / edge.

• [Dean - Ledoussal - Majumdar - Schehr, 2018] Here w is essentially the same as
above (but α, λ are proportional to the inverse temperature). The limiting behavior
of the positions of a system of free fermions at finite temperature trapped with
certain class of potentials (V (x) ∼ x2n) in the bulk / edge.

• [Bothner - Little, 2022] Here w(r) = Φ(sσ−1(r + 1))− Φ(sσ−1(r − 1)) with
Φ(z) = 1√

π

∫ z
−∞ e−y2

dy . The limiting (weak non-hermiticity limit) behavior of the
real parts of eigenvalues of the Complex Elliptic Ginibre ensemble in the bulk /
edge.
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Deformations of the sine kernel
For any integrable function w : R → [0, 1], we consider the deformed sine kernel

K sin
w (x , y) =

∫ ∞

−∞
e2πi(x−y)uw(u)du.

The Fredholm determinant Fw (s) = det
(
1 −Ksin

w |(−s,s)
)

associated to the integral
operator Ksin

w is well-defined, and we have

Fw (s) = det
(

1 −
√

wsKsin√ws

)
,

where
√

ws denotes the multiplication operator with a square root of the function w( .
2s ).

Remark Writing Fw (s) in this form we can use the Riemann–Hilbert problem
associated to the integrable IIKS structure

f⃗ (x) =

√
ws(x)
2πi

(
eiπx

e−iπx

)
, g⃗(y) =

√
ws(y)

(
e−iπy

−eiπy

)
.

Aim
• Generalization of JMMS formula for Fw (s);

• Suitable deformation which relates it to an integrable PDE.
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Main result
Theorem (Claeys - T.)
For every s > 0, we have the identity

∂ss∂s log Fw (s) = 2
∫
R
λw ′(λ)ϕ(λ, s)ψ(λ, s)dλ,

where ϕ, ψ solve the (Zakharov-Shabat) system of equations

∂sϕ(λ, s) = 2iπ
(
λϕ(λ, s) +

1
4π2s

∫
R
ϕ2(µ, s)w ′(µ)dµ ψ(λ, s)

)
,

∂sψ(λ, s) = −2iπ
(

1
4π2s

∫
R
ψ2(µ, s)w ′(µ)dµ ϕ(λ, s) + λψ(λ, s)

)
.

with λ→ ∞ asymptotics ϕ(λ, s) ∼ e2πisλ, ψ(λ, s) ∼ e−2πisλ.

Remark If w is even, then

∂ss∂s log Fw (s) = 2
∫
R
λw ′(λ)ϕ(λ, s)ϕ(−λ, s)dλ,

where ϕ solves the integro-differential equation

∂sϕ(λ, s) = 2iπ
(
λϕ(λ, s) +

1
4π2s

∫
R
ϕ2(µ, s)w ′(µ)dµ ϕ(−λ, s)

)
, ϕ(λ, s) ∼λ→∞ e2πisλ.
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Reduction to Painlevé V

Back to the zero temperature case for w(r) = χ(− 1
2 ,

1
2 )

then w ′(r) = δ− 1
2
(r)− δ 1

2
(r).

Then our integro-differential equations reduce to

∂sϕ

(
±1

2
, s
)

= 2iπ
(
±1

2
ϕ

(
±1

2
, s
)
+

1
4π2s

(
ϕ2
(
−1

2
, s
)
− ϕ2

(
1
2
, s
))

ϕ

(
∓1

2
, s
))

and by defining

v(x) =
1
πi
ϕ

(
1
2
,

x
2πi

)
ϕ

(
−1

2
,

x
2πi

)
, u(x) =

ϕ2 ( 1
2 ,

x
2πi

)
ϕ2
(
− 1

2 ,
x

2πi

) ,
we recover the system

xv ′ = v2(u − 1
u
), xu′ = xu − 2v(u − 1)2

implying that u solves the Painlevé V equation

u′′ =
u
x
− u′

x
− u(u + 1)

2(u − 1)
+ (u′)2 3u − 1

2u(u − 1)
.

Moreover, the JMMS formula is recovered by ν′(s) = v(2is) = − 2
π
ϕ
( 1

2 ,
s
π

)
ϕ
(
− 1

2 ,
s
π

)
.
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Alternative integro-differential system

We can also obtain an analogue integro-differential system for

v(λ, s) =
1

2πi
ϕ
(
λ,

s
2πi

)
ϕ
(
−λ, s

2πi

)
, u(λ, s) =

ϕ2 (λ, s
2πi

)
ϕ2
(
−λ, s

2πi

) .
In particular

∂sv(λ, s) = −v(λ, s)
s

(
u

1
2 (λ, s) + u− 1

2 (λ, s)
)∫

R
v(λ, s)u

1
2 (λ, s)w ′(λ)dλ,

∂su(λ, s) = 2λu(λ, s)− 2
s

(
u

1
2 (λ, s)− u

3
2 (λ, s)

)∫
R

v(λ, s)u
1
2 (λ, s)w ′(λ)dλ.

Remark From this system we can derive an integro-differential second order (in s)
equation for u(λ, s), which degenerates to the Painlevé V equation when w is the
characteristic function, but where some parts still depend on v(λ, s).
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Relation with other integro-differential equation

[Bothner - Little, 2022] For the same Fredholm determinant Fw (s) another
characterization is given

d2

ds2 log Fw (s) =
(∫ ∞

0
r(s, λ)w ′(λ)dλ

)2

for r(s, λ) a solution of another (new) integro-differential equation.

This equation reduces, in the case of w = χ(−1/2,1/2), to a differential equation for
r(s, 1/2) which is known to be related to the Painlevé V σ-form by the identity

d
ds

(
ν(s)

s

)
= −r 2(s, 1/2).

Remark How the equation for r(s, λ) is related to the system of equations for
u(λ, s), v(λ, s) is to be understood.
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RH problem

U(λ; s) = U(w)(λ; s) : C → GL(2,C) is such that

(1) U(λ; s) is analytic for λ ∈ C \ R.

(2) U(λ; s) has continuous boundary values U±(λ; s) when λ approaches R from
either above (+) or below (−) and they satisfy the jump condition

U+(λ; s) = U−(λ; s)
(

1 1 − w(λ)
0 1

)
=JU (λ)

, λ ∈ R.

(3) There exists a matrix U1 = U1(s) such that we have as λ→ ∞,

U(λ; s) =
(

I2 +
U1

λ
+ O(λ−2)

)
e2πisλσ3



(
1 1
1 0

)
, Imλ > 0,

(
1 0
1 −1

)
Imλ < 0,

where I2 =

(
1 0
0 1

)
and σ3 =

(
1 0
0 −1

)
.
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The road to the coupled system

Proposition
The unique solution U(λ; s) to the RH problem for U solves the following linear
differential equation,

∂sU(λ; s) = M(λ, s)U(λ; s), M(λ; s) = 2iπ
(

λ −2β(s)
2γ(s) −λ

)
,

where
β(s) := [U1(s)]1,2 , γ(s) := [U1(s)]2,1 ,

Moreover, if w is even,

β(s) = −γ(s), ∂sα = 4πiγ2, for α(s) = [U1(s)]1,1 .

In addition, for ϕ(λ; s) := U1,1(λ; s) and ψ(λ; s) := U2,1(λ; s), we have the following
trace formulas

β(s) = − 1
8π2s

∫
R
ϕ2(λ; s)w ′(λ)dλ, γ(s) = − 1

8π2s

∫
R
ψ2(λ; s)w ′(λ)dλ.

together with the orthogonality condition∫
R
ϕ(λ; s)ψ(λ; s)w ′(λ)dλ = 0.
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And the road to the Fredholm determinant formula

Proposition

Let w : R → [0, 1] be integrable and C1. Then the unique solution of the RH problem
U(w) is such that

∂s log Fw (s) =
1

2πis

∫
R

[
U(w)

+ (r ; s)−1 d
dr

U(w)
+ (r ; s)

]
2,1

w ′(r)rdr .

This result is rewritten as

∂s log Fw (s) =
1

2πis

∫
R

rw ′(r)(ψ(r ; s)∂rϕ(r ; s)− ϕ(r , s)∂rψ(r ; s))dr .

Together with the simplification

∂s(ψ(r , s)∂rϕ(r , s)− ϕ(r , s)∂rψ(r , s)) = 4πiϕ(r , s)ψ(r , s),

the final result follows

∂ss∂s log Fw (s) = 2
∫
R

rw ′(r)ϕ(r , s)ψ(r , s)dr .
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The new t parameter

Let W : R → [0, 1] be C1 and such that W (.2 − t) is integrable on [0,+∞) for any
t ∈ R. Then, we define a family of even functions wt , as

wt(u) = W (u2 − t), t ∈ R,

and consider the Fredholm determinant

QW (s, t) := det
(

1 −Ksin
wt |(−s,s)

)
= Fwt (s).

Remark An alternative expression for QW is

QW (s, t) = det
(

1 −Ksin
ws,t |(−1/2,1/2)

)
,

where

ws,t(r) = wt

( r
2s

)
= W

(
r 2

4s2 − t
)
.

Moreover, as before, we also have the fundamental identity

QW (s, t) := det
(

1 −
√

ws,tKsin√ws,t

)
,

and thus the results on the s-dependence of QW (s, t) hold identically as before for Fws,t .
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The main result

Define σW (x , t) and qW (x , t) by

σW (x , t) := logQW (s =
x
π
, t), qW (x , t)2 = −∂2

xσ(x , t).

Theorem (Claeys, T.)
For any x > 0, t ∈ R, q = qW solves the PDE

∂x

(
∂x∂tq

2q

)
= ∂t(q2)− 1,

and σ = σW solves the PDE

(∂2
x∂tσ)

2 = 4∂2
xσ
(
−2x∂x∂tσ + 2∂tσ − (∂x∂tσ)

2
)
.

Remark For wt(u) = W (u2 − t) and W (y) = 1
e4y+1 , the connection between

QW (s, t) = det
(
1 −√

ws,tKsin√ws,t
)

and these PDEs was already found in
[Its - Izergin - Korepin - Slavnov, 1990] in the study of the impenetrable one
dimensional Bose gas.
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The second Lax equation
We consider the RH problem for U corresponding to w = wt so that

U(λ; s, t) := U(wt )(λ; s)

and we introduce the differential operator

Dλ,t = ∂λ + 2λ∂t ,

that combines the dependence on the spectral parameter λ and the deformation
parameter t .
Remark We recall that the jump matrix of U(wt ) is given by(

1 1 − W (λ2 − t)
0 1

)
,

and Dλ,tW (λ2 − t) = 0.

Proposition
We have Dλ,tU(λ, s, t) = L(λ, s, t)U(λ, s, t), with

L(λ, s, t) =
(

2πis + 2∂tα(s, t) −2∂tγ(s, t)
2∂tγ(s, t) −2πis − 2∂tα(s, t)

)
.
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The compatibility condition

We end up with the system for U given by

∂sU(λ, s, t) = M(λ, s, t)U(λ, s, t) Dλ,tU(λ, s, t) = L(λ, s, t)U(λ, s, t)

for which the compatibility condition reads as

∂sL − Dλ,tM + [L,M] = 0,

and is equivalent to a coupled system of PDEs for α(s, t) and γ(s, t), namely

− 8iπγ∂tγ + ∂t∂sα = 0,

8πγ(πs − i∂tα) + ∂t∂sγ = 0.

Remark
• The first equation is the t-derivative of ∂sα = 4πiγ2, already known.

• The second one, after taking another s-derivative and doing some manipulations,
changing variable x = 2πs and setting

q(x , t) = 2iγ(
x

2π
, t),

gives exactly the q-PDE.
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The σ-PDE

Define p(x , t) = −∂xσ(x , t), so that q2(x , t) = −∂2
xσ(x , t) = ∂x p(x , t). We have

q2(x , t) = −4γ2(
x

2π
, t), p(x , t) = 2iα(

x
2π
, t).

We can thus re-write the PDE as

∂x∂tq = −2xq + 2q∂tp.

Multiplying with ∂tq, we find

1
2
∂x

(
(∂tq)2

)
= x∂2

x∂tσ + ∂x∂tσ ∂
2
x∂tσ.

Integrating in x , we get

1
2
(∂tq)2 = x∂x∂tσ − ∂tσ +

1
2
(∂x∂tσ)

2 .

Noticing that (∂t q)
2

2 =
(∂t (q

2))2

8q2 = − (∂2
x ∂tσ)

2

8∂2
x σ

, one can finally obtain the PDE for σ.

Remark The analogue result in the Airy case involves the KdV bilinear equation.
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Formula for the Fredholm determinant

The relation between q(x , t) and the Fredholm determinant, given by

∂2
x logQW (

x
2π
, t) = −q(x , t)2, x > 0,

can be deduced from the previous result

∂ss∂s logQW (s, t) = 2
∫
R
λw ′

t (λ)ϕ(λ, s, t)ϕ(−λ, s, t)dλ.

Indeed, by residue computation we obtain

−
∫
R
λϕ(λ)ϕ(−λ)w ′

t (λ)dλ = 2πi
(
α+ 4πisγ2

)
= 2πi (α+ s∂sα) = 2πi∂s(sα),

which after integration and derivation gives

∂2
s logQW (s, t) = 16π2γ2(s, t).

and after the change of variables this corresponds to the result for q.
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Solution of the σ-PDE initial boundary value problem
The function W can be seen as scattering data for the solution σ = σW (x , t) to the
σ-PDE, in the following sense.

The solution of the σ-PDE with initial data

lim
x→0

1
x
σ(x , t) =: F (t), t > −T ,

where F ∈ C1(−T ,+∞), F ′(t)/t ∈ L1(−T ,+∞), is
σ(x , t) = log det

(
1 −√

ws,tKsin√ws,t
)

for x = 2πs > 0 and t < T , with

ws,t(u) = −π
2
(A−1FT )

(√
u2

4s2 − t + T

)
, where

• FT (s) = F (T − s2);
• A and A−1 denote the Abel transform and its inverse, respectively

Af (y) = 2
∫ +∞

y

f (r)r√
r 2 − y2

dr , y ∈ R,

for C1-functions f : R → C with limr→+∞ rf (r) = 0 and f is integrable and

A−1F (r) = − 1
π

∫ +∞

r

F ′(y)√
y2 − r 2

dy , r ∈ R.
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Final remarks

• The final result comes from the fact that for any T > t we have

lim
x→0

1
x
σW (x , t) = − 4

π

∫ ∞

√
T−t

wT (r)r√
r 2 − y2

dr = − 2
π
(AwT )(

√
T − t),

a simple transformation between the initial data and the scattering data (coming
from the simple asymptotics of the Fredholm determinant itself).

• This could in effect suggests that perhaps we should look for a PDE for 1
x σW (x , t)

directly... to check!
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Thank you!
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