Integrability of deformed sine kernel determinants

Sofia Tarricone

Institut de Physique Théorique, CEA Paris-Saclay

PIICQ III Workshop

Université d'Angers 25 May 2023

Based on ongoing work with T. Claeys

(1) Introduction: sine vs Airy
(2) Integro-differential equations
(3) Integrable PDE

Outline

(1) Introduction: sine vs Airy

2) Integro-differential equations

(3) Integrable PDE

Background on sine vs Airy kernels

The sine and Airy kernels are functions of two variables $(x, y) \in \mathbb{R}^{2}$ defined respectively as

$$
K^{\sin }(x, y)=\frac{\sin (\pi(x-y))}{\pi(x-y)}, \quad \text { and } \quad K^{\text {Ai }}(x, y)=\int_{0}^{+\infty} \operatorname{Ai}(x+u) \operatorname{Ai}(y+u) \mathrm{d} u .
$$

The corresponding integral operators are denoted by $\mathcal{K}^{\text {sin }}$ and $\mathcal{K}^{\text {Ai }}$.
[Soshnikov, 2000] Hermitian locally trace class operator \mathcal{K} on $L^{2}(\mathbb{R})$ with kernel $K(\cdot, \cdot)$ defines a determinantal point process on \mathbb{R} with
if and only if $0 \leq \mathcal{K} \leq 1$. If the corresponding point process exists it is unique. \downarrow
$\mathcal{K}^{\text {sin }}$ and $\mathcal{K}^{\text {Ai }}$ define the sine and Airy DPPs on \mathbb{R}.

GUE: bulk vs edge behavior

The Gaussian Unitary Ensemble is built up by taking the set of Hermitian $N \times N$ matrices, together with

$$
\mathbb{P}(M) d M=\frac{1}{Z_{N}} e^{-t r M^{2} / 2} d M,
$$

The eigenvalues of GUE matrices are described by a determinantal point process where the correlation kernel K_{N} is written in terms of Hermite polynomials.
In the large N limit, the behavior of the eigenvalues' correlation kernels is

Bulk

$$
\begin{gathered}
\left(N d\left(x_{0}\right)\right)^{-1} K_{N}\left(x_{0}+\frac{x}{N d\left(x_{0}\right)}, x_{0}+\frac{y}{N d\left(x_{0}\right)}\right) \\
\downarrow N \rightarrow \infty \\
K^{\sin }(x, y)
\end{gathered}
$$

Edge

$$
\begin{gathered}
N^{-2 / 3} K_{N}\left(2+\frac{x}{N^{2 / 3}}, 2+\frac{y}{N^{2 / 3}}\right) \\
\downarrow N \rightarrow \infty \\
K^{\mathrm{Ai}}(x, y)
\end{gathered}
$$

Their common structures

- They are both of integrable IIKS type

$$
K(x, y)=\frac{\vec{f}^{\top}(x) \vec{g}(y)}{x-y}, \text { with } \vec{f}^{\top}(x) \vec{g}(x)=0
$$

In particular
$K^{\sin }(x, y)=\frac{\mathrm{e}^{i \pi x} \mathrm{e}^{-i \pi y}-\mathrm{e}^{-i \pi x} \mathrm{e}^{i \pi y}}{2 \pi i(x-y)}$,

$$
K^{\mathrm{Ai}}(x, y)=\frac{\operatorname{Ai}(x) \mathrm{Ai}^{\prime}(y)-\mathrm{Ai}^{\prime}(x) \operatorname{Ai}(y)}{x-y}
$$

- They both have integral representations

$$
K^{\sin }(x, y)=\int_{-1 / 2}^{1 / 2} \mathrm{e}^{2 \pi i x u} \mathrm{e}^{-2 \pi i y u} d u \quad K^{\mathrm{Ai}}(x, y)=\int_{0}^{+\infty} \operatorname{Ai}(x+u) \operatorname{Ai}(y+u) d u
$$

- Thus their integral operators can both be decomposed as

$$
\mathcal{K}^{\sin }=\mathcal{F}^{*} \chi_{(-1 / 2,1 / 2)} \mathcal{F}
$$

for \mathcal{F} being the Fourier transform and $\chi_{(-1 / 2,1 / 2)}$ the projection on the interval $(-1 / 2,1 / 2)$.

$$
\mathcal{K}^{\mathrm{Ai}}=\mathcal{A} \chi_{(0, \infty)} \mathcal{A}^{*}
$$

for \mathcal{A} being the Airy transform and $\chi_{(0, \infty)}$ the projection on the interval $(0, \infty)$.

The JMMS and TW formulas

Of particular interest for the sine and Airy DPPs are the following gap probabilities expressed in terms of Fredholm determinants

$$
F(s)=\operatorname{det}\left(1-\left.\mathcal{K}^{\sin }\right|_{(-s, s)}\right) \quad \text { and } \quad G(s)=\operatorname{det}\left(1-\left.\mathcal{K}^{\mathrm{Ai}}\right|_{(s, \infty)}\right) .
$$

[Jimbo-Miwa-Mori-Sato, 1980]
The Fredholm determinant $F(s)$ satisfies

$$
F(s)=\exp \left(\int_{0}^{\pi s} \frac{\nu(x)}{x} \mathrm{~d} x\right),
$$

where ν is a solution of the Painlevé V σ-form equation, i.e. it solves

$$
\left(x \nu^{\prime \prime}\right)^{2}+4\left(x \nu^{\prime}-\nu\right)\left(x \nu^{\prime}-\nu+\left(\nu^{\prime}\right)^{2}\right)=0,
$$

together with boundary condition

$$
\nu(x)=-\frac{1}{\pi} x+O\left(x^{2}\right), \quad x \rightarrow 0
$$

[Tracy-Widom, 1994]
The Fredholm determinant $G(s)$ satisfies

$$
G(s)=\exp \left(-\int_{s}^{+\infty}(r-s) u^{2}(r) d r\right)
$$

where u is the Hastings-McLeod solution of the Painlevé II equation, i.e. it solves

$$
u^{\prime \prime}(s)=s u(s)+2 u^{3}(s)
$$

together with the boundary condition

$$
u(s) \sim \operatorname{Ai}(s) \text { for } s \rightarrow+\infty .
$$

Deformation of the Airy kernel

For a weight function $w: \mathbb{R} \rightarrow[0,1]$ in a certain class, $s \in \mathbb{R}$, a deformation of the Airy kernel is built as

$$
K_{w, s}^{\mathrm{Ai}}(x, y)=\int_{-\infty}^{+\infty} w(z) \operatorname{Ai}(x+s+z) \operatorname{Ai}(y+z+s) d z
$$

For some specific choice of w this is often called the finite temperature Airy kernel.
The associated integral operator $\mathcal{K}_{w, s}^{A i}$ is s.t. $G_{w}(s)=\operatorname{det}\left(1-\mathcal{K}_{w, s}^{A i} \mid(0,+\infty)\right)$ is well defined.

Remark [Amir - Corwin - Quastel, 2011] The probability distribution function of the Hopf-Cole solution $h=h(X, T)=-\log Z(X, T)$ of the KPZ equation

$$
\partial_{T} h=\frac{1}{2} \partial_{X}^{2} h-\frac{1}{2}\left(\partial_{X} h\right)^{2}+\xi, \quad \xi=\xi(X, T) \text { is a Gaussian space-time white noise }
$$ with narrow wedge initial condition $Z(X, 0)=\delta_{0}(X)$ is written in terms of $G_{w}(s)$, for $w(z)=w_{K P Z}(z)=\frac{y}{y-e^{-(T / 2)^{1 / 3}}}$.

Integrability results

1. [Amir - Corwin - Quastel, 2011] A generalization of the Tracy-Widom formula for $G_{w}(s)=\operatorname{det}\left(1-\mathcal{K}_{w, s}^{A i} s_{(0,+\infty)}\right)\left(\right.$ with $\left.w=w_{K P Z}\right)$, which reads as

$$
\frac{d^{2}}{d s^{2}} \ln G_{w}(s)=-\int_{\mathbb{R}} \varphi^{2}(r ; s) w^{\prime}(r) d r
$$

where φ solves the integro-differential Painlevé II equation

$$
\frac{\partial^{2}}{\partial s^{2}} \varphi(z ; s)=\left(z+s+2 \int_{\mathbb{R}} \varphi^{2}(r ; s) w^{\prime}(r) d r\right) \varphi(z ; s)
$$

with $\varphi(z ; s) \sim \operatorname{Ai}(z+s)$ for $s \rightarrow+\infty$ pointwise in z.
Remark For $w=\chi_{(0,+\infty)}$ one gets back $\varphi(0 ; s)=u(s)$ and the TW formula.
2. [Cafasso - Claeys - Ruzza, 2021] The function $u_{w}(x, t)=\partial_{x}^{2} \log G_{w}(x, t)+\frac{x}{2 t}$ for $G_{w}(x, t)$ the deformed Fredholm determinant associated to $t^{2 / 3} K_{w_{t}, x t^{-1}}^{\mathrm{Ai}}\left(t^{2 / 3} ., t^{2 / 3}.\right)$, with $w_{t}(\lambda)=w\left(t^{2 / 3} \lambda\right)$, solves the Korteweg-de Vries equation

$$
\partial_{t} u_{w}+2 u_{w} \partial_{x} u_{w}+\frac{1}{6} \partial_{x}^{3} u_{w}=0
$$

Other appearences

The deformed Airy kernel together with the analogue deformed sine kernel have been found in multiple models for specific choices of the weight function w.

- [Johansson, 2008, Lietchy - Wang, 2018] Here $w(r)=\left(1+e^{-\alpha r}\right)^{-1}$ $w(r)=\left(1+e^{-\lambda\left(4 r^{2}-1\right)}\right)^{-1}$. The limiting behavior of the eigenvalues in the Moshe-Neurberg-Shapiro model in the bulk / edge.
- [Dean - Ledoussal - Majumdar - Schehr, 2018] Here w is essentially the same as above (but α, λ are proportional to the inverse temperature). The limiting behavior of the positions of a system of free fermions at finite temperature trapped with certain class of potentials ($V(x) \sim x^{2 n}$) in the bulk / edge.
- [Bothner - Little, 2022] Here $w(r)=\Phi\left(s \sigma^{-1}(r+1)\right)-\Phi\left(s \sigma^{-1}(r-1)\right)$ with $\Phi(z)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{z} \mathrm{e}^{-y^{2}} d y$. The limiting (weak non-hermiticity limit) behavior of the real parts of eigenvalues of the Complex Elliptic Ginibre ensemble in the bulk / edge.

Deformations of the sine kernel

For any integrable function $w: \mathbb{R} \rightarrow[0,1]$, we consider the deformed sine kernel

$$
K_{w}^{\sin }(x, y)=\int_{-\infty}^{\infty} \mathrm{e}^{2 \pi i(x-y) u} w(u) \mathrm{d} u
$$

The Fredholm determinant $F_{w}(s)=\operatorname{det}\left(1-\left.\mathcal{K}_{w}^{\sin }\right|_{(-s, s)}\right)$ associated to the integral operator $\mathcal{K}_{w}^{\text {sin }}$ is well-defined, and we have

$$
F_{w}(s)=\operatorname{det}\left(1-\sqrt{W_{s}} \mathcal{K}^{\sin } \sqrt{W_{s}}\right)
$$

where $\sqrt{W_{s}}$ denotes the multiplication operator with a square root of the function $w\left(\frac{\dot{r}}{2 s}\right)$.
Remark Writing $F_{w}(s)$ in this form we can use the Riemann-Hilbert problem associated to the integrable IIKS structure

$$
\vec{f}(x)=\frac{\sqrt{w_{s}(x)}}{2 \pi i}\binom{\mathrm{e}^{i \pi x}}{\mathrm{e}^{-i \pi x}}, \vec{g}(y)=\sqrt{w_{s}(y)}\binom{\mathrm{e}^{-i \pi y}}{-\mathrm{e}^{i \pi y}} .
$$

Aim

- Generalization of JMMS formula for $F_{w}(s)$;
- Suitable deformation which relates it to an integrable PDE.

Outline

(1) Introduction: sine vs Airy
(2) Integro-differential equations

(3) Integrable PDE

Main result

Theorem (Claeys - T.)

For every $s>0$, we have the identity

$$
\partial_{s} s \partial_{s} \log F_{w}(s)=2 \int_{\mathbb{R}} \lambda w^{\prime}(\lambda) \phi(\lambda, s) \psi(\lambda, s) \mathrm{d} \lambda
$$

where ϕ, ψ solve the (Zakharov-Shabat) system of equations

$$
\begin{aligned}
& \partial_{s} \phi(\lambda, s)=2 i \pi\left(\lambda \phi(\lambda, s)+\frac{1}{4 \pi^{2} s} \int_{\mathbb{R}} \phi^{2}(\mu, s) w^{\prime}(\mu) \mathrm{d} \mu \psi(\lambda, s)\right) \\
& \partial_{s} \psi(\lambda, s)=-2 i \pi\left(\frac{1}{4 \pi^{2} s} \int_{\mathbb{R}} \psi^{2}(\mu, s) w^{\prime}(\mu) \mathrm{d} \mu \phi(\lambda, s)+\lambda \psi(\lambda, s)\right)
\end{aligned}
$$

with $\lambda \rightarrow \infty$ asymptotics $\phi(\lambda, s) \sim \mathrm{e}^{2 \pi i s \lambda}, \psi(\lambda, s) \sim \mathrm{e}^{-2 \pi i s \lambda}$.
Remark If w is even, then

$$
\partial_{s} s \partial_{s} \log F_{w}(s)=2 \int_{\mathbb{R}} \lambda w^{\prime}(\lambda) \phi(\lambda, s) \phi(-\lambda, s) \mathrm{d} \lambda
$$

where ϕ solves the integro-differential equation

$$
\partial_{s} \phi(\lambda, s)=2 \mathrm{i} \pi\left(\lambda \phi(\lambda, s)+\frac{1}{4 \pi^{2} s} \int_{\mathbb{R}} \phi^{2}(\mu, s) w^{\prime}(\mu) \mathrm{d} \mu \phi(-\lambda, s)\right), \phi(\lambda, s) \sim_{\lambda \rightarrow \infty} \mathrm{e}^{2 \pi \mathrm{i} s \lambda}
$$

Reduction to Painlevé V

Back to the zero temperature case for $w(r)=\chi_{\left(-\frac{1}{2}, \frac{1}{2}\right)}$ then $w^{\prime}(r)=\delta_{-\frac{1}{2}}(r)-\delta_{\frac{1}{2}}(r)$.
Then our integro-differential equations reduce to

$$
\partial_{s} \phi\left(\pm \frac{1}{2}, s\right)=2 i \pi\left(\pm \frac{1}{2} \phi\left(\pm \frac{1}{2}, s\right)+\frac{1}{4 \pi^{2} s}\left(\phi^{2}\left(-\frac{1}{2}, s\right)-\phi^{2}\left(\frac{1}{2}, s\right)\right) \phi\left(\mp \frac{1}{2}, s\right)\right)
$$

and by defining

$$
v(x)=\frac{1}{\pi \mathrm{i}} \phi\left(\frac{1}{2}, \frac{x}{2 \pi \mathrm{i}}\right) \phi\left(-\frac{1}{2}, \frac{x}{2 \pi \mathrm{i}}\right), \quad u(x)=\frac{\phi^{2}\left(\frac{1}{2}, \frac{x}{2 \pi \mathrm{i}}\right)}{\phi^{2}\left(-\frac{1}{2}, \frac{x}{2 \pi \mathrm{i}}\right)},
$$

we recover the system

$$
x v^{\prime}=v^{2}\left(u-\frac{1}{u}\right), \quad x u^{\prime}=x u-2 v(u-1)^{2}
$$

implying that u solves the Painlevé V equation

$$
u^{\prime \prime}=\frac{u}{x}-\frac{u^{\prime}}{x}-\frac{u(u+1)}{2(u-1)}+\left(u^{\prime}\right)^{2} \frac{3 u-1}{2 u(u-1)} .
$$

Moreover, the JMMS formula is recovered by $\nu^{\prime}(s)=v(2 i s)=-\frac{2}{\pi} \phi\left(\frac{1}{2}, \frac{s}{\pi}\right) \phi\left(-\frac{1}{2}, \frac{s}{\pi}\right)$.

Alternative integro-differential system

We can also obtain an analogue integro-differential system for

$$
v(\lambda, s)=\frac{1}{2 \pi \mathrm{i}} \phi\left(\lambda, \frac{s}{2 \pi \mathrm{i}}\right) \phi\left(-\lambda, \frac{s}{2 \pi \mathrm{i}}\right), \quad u(\lambda, s)=\frac{\phi^{2}\left(\lambda, \frac{s}{2 \pi \mathrm{i}}\right)}{\phi^{2}\left(-\lambda, \frac{s}{2 \pi \mathrm{i}}\right)}
$$

In particular

$$
\begin{aligned}
& \partial_{s} v(\lambda, s)=-\frac{v(\lambda, s)}{s}\left(u^{\frac{1}{2}}(\lambda, s)+u^{-\frac{1}{2}}(\lambda, s)\right) \int_{\mathbb{R}} v(\lambda, s) u^{\frac{1}{2}}(\lambda, s) w^{\prime}(\lambda) \mathrm{d} \lambda \\
& \partial_{s} u(\lambda, s)=2 \lambda u(\lambda, s)-\frac{2}{s}\left(u^{\frac{1}{2}}(\lambda, s)-u^{\frac{3}{2}}(\lambda, s)\right) \int_{\mathbb{R}} v(\lambda, s) u^{\frac{1}{2}}(\lambda, s) w^{\prime}(\lambda) \mathrm{d} \lambda
\end{aligned}
$$

Remark From this system we can derive an integro-differential second order (in s) equation for $u(\lambda, s)$, which degenerates to the Painlevé V equation when w is the characteristic function, but where some parts still depend on $v(\lambda, s)$.

Relation with other integro-differential equation

[Bothner - Little, 2022] For the same Fredholm determinant $F_{w}(s)$ another characterization is given

$$
\frac{d^{2}}{d s^{2}} \log F_{w}(s)=\left(\int_{0}^{\infty} r(s, \lambda) w^{\prime}(\lambda) d \lambda\right)^{2}
$$

for $r(s, \lambda)$ a solution of another (new) integro-differential equation.
This equation reduces, in the case of $w=\chi_{(-1 / 2,1 / 2)}$, to a differential equation for $r(s, 1 / 2)$ which is known to be related to the Painlevé $\mathrm{V} \sigma$-form by the identity

$$
\frac{d}{d s}\left(\frac{\nu(s)}{s}\right)=-r^{2}(s, 1 / 2)
$$

Remark How the equation for $r(s, \lambda)$ is related to the system of equations for $u(\lambda, s), v(\lambda, s)$ is to be understood.

RH problem

$U(\lambda ; s)=U^{(w)}(\lambda ; s): \mathbb{C} \rightarrow G L(2, \mathbb{C})$ is such that
(1) $U(\lambda ; s)$ is analytic for $\lambda \in \mathbb{C} \backslash \mathbb{R}$.
(2) $U(\lambda ; s)$ has continuous boundary values $U_{ \pm}(\lambda ; s)$ when λ approaches \mathbb{R} from either above (+) or below (-) and they satisfy the jump condition

$$
U_{+}(\lambda ; s)=U_{-}(\lambda ; s) \underbrace{\left(\begin{array}{cc}
1 & 1-w(\lambda) \\
0 & 1
\end{array}\right)}_{=J_{U}(\lambda)}, \lambda \in \mathbb{R} .
$$

(3) There exists a matrix $U_{1}=U_{1}(s)$ such that we have as $\lambda \rightarrow \infty$,

$$
U(\lambda ; s)=\left(I_{2}+\frac{U_{1}}{\lambda}+O\left(\lambda^{-2}\right)\right) \mathrm{e}^{2 \pi \mathrm{is} \lambda \sigma_{3}} \begin{cases}\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right), & \operatorname{Im} \lambda>0 \\
\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right) & \operatorname{Im} \lambda<0\end{cases}
$$

where $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

The road to the coupled system

Proposition

The unique solution $U(\lambda ; s)$ to the $R H$ problem for U solves the following linear differential equation,

$$
\partial_{s} U(\lambda ; s)=M(\lambda, s) U(\lambda ; s), \quad M(\lambda ; s)=2 \mathrm{i} \pi\left(\begin{array}{cc}
\lambda & -2 \beta(s) \\
2 \gamma(s) & -\lambda
\end{array}\right)
$$

where

$$
\beta(s):=\left[U_{1}(s)\right]_{1,2}, \quad \gamma(s):=\left[U_{1}(s)\right]_{2,1},
$$

Moreover, if w is even,

$$
\beta(s)=-\gamma(s), \quad \partial_{s} \alpha=4 \pi \mathrm{i} \gamma^{2}, \quad \text { for } \alpha(s)=\left[U_{1}(s)\right]_{1,1} .
$$

In addition, for $\phi(\lambda ; s):=U_{1,1}(\lambda ; s)$ and $\psi(\lambda ; s):=U_{2,1}(\lambda ; s)$, we have the following trace formulas

$$
\beta(s)=-\frac{1}{8 \pi^{2} s} \int_{\mathbb{R}} \phi^{2}(\lambda ; s) w^{\prime}(\lambda) \mathrm{d} \lambda, \quad \gamma(s)=-\frac{1}{8 \pi^{2} s} \int_{\mathbb{R}} \psi^{2}(\lambda ; s) w^{\prime}(\lambda) \mathrm{d} \lambda
$$

together with the orthogonality condition

$$
\int_{\mathbb{R}} \phi(\lambda ; s) \psi(\lambda ; s) w^{\prime}(\lambda) \mathrm{d} \lambda=0 .
$$

And the road to the Fredholm determinant formula

Proposition

Let $w: \mathbb{R} \rightarrow[0,1]$ be integrable and C^{1}. Then the unique solution of the $R H$ problem $U^{(w)}$ is such that

$$
\partial_{s} \log F_{w}(s)=\frac{1}{2 \pi \mathrm{i} s} \int_{\mathbb{R}}\left[U_{+}^{(w)}(r ; s)^{-1} \frac{\mathrm{~d}}{\mathrm{~d} r} U_{+}^{(w)}(r ; s)\right]_{2,1} w^{\prime}(r) r \mathrm{~d} r .
$$

This result is rewritten as

$$
\partial_{s} \log F_{w}(s)=\frac{1}{2 \pi \mathrm{i} s} \int_{\mathbb{R}} r w^{\prime}(r)\left(\psi(r ; s) \partial_{r} \phi(r ; s)-\phi(r, s) \partial_{r} \psi(r ; s)\right) \mathrm{d} r .
$$

Together with the simplification

$$
\partial_{s}\left(\psi(r, s) \partial_{r} \phi(r, s)-\phi(r, s) \partial_{r} \psi(r, s)\right)=4 \pi \mathrm{i} \phi(r, s) \psi(r, s)
$$

the final result follows

$$
\partial_{s} s \partial_{s} \log F_{w}(s)=2 \int_{\mathbb{R}} r w^{\prime}(r) \phi(r, s) \psi(r, s) \mathrm{d} r .
$$

Outline

(1) Introduction: sine vs Airy
(2) Integro-differential equations
(3) Integrable PDE

The new t parameter

Let $W: \mathbb{R} \rightarrow[0,1]$ be C^{1} and such that $W\left(.^{2}-t\right)$ is integrable on $[0,+\infty)$ for any $t \in \mathbb{R}$. Then, we define a family of even functions w_{t}, as

$$
w_{t}(u)=W\left(u^{2}-t\right), \quad t \in \mathbb{R}
$$

and consider the Fredholm determinant

$$
Q_{W}(s, t):=\operatorname{det}\left(1-\left.\mathcal{K}_{w_{t}}^{\sin }\right|_{(-s, s)}\right)=F_{w_{t}}(s) .
$$

Remark An alternative expression for Q_{W} is

$$
Q_{W}(s, t)=\operatorname{det}\left(1-\left.\mathcal{K}_{W_{s}, t}^{\text {sin }}\right|_{(-1 / 2,1 / 2)}\right),
$$

where

$$
w_{s, t}(r)=w_{t}\left(\frac{r}{2 s}\right)=W\left(\frac{r^{2}}{4 s^{2}}-t\right)
$$

Moreover, as before, we also have the fundamental identity

$$
Q_{W}(s, t):=\operatorname{det}\left(1-\sqrt{W_{s, t}} \mathcal{K}^{\sin } \sqrt{W_{s, t}}\right),
$$

and thus the results on the s-dependence of $Q_{w}(s, t)$ hold identically as before for $F_{w_{s, t}}$.

The main result

Define $\sigma_{w}(x, t)$ and $q_{w}(x, t)$ by

$$
\sigma_{w}(x, t):=\log Q_{w}\left(s=\frac{x}{\pi}, t\right), \quad q_{w}(x, t)^{2}=-\partial_{x}^{2} \sigma(x, t)
$$

Theorem (Claeys, T.)

For any $x>0, t \in \mathbb{R}, q=q_{w}$ solves the $P D E$

$$
\partial_{x}\left(\frac{\partial_{x} \partial_{t} q}{2 q}\right)=\partial_{t}\left(q^{2}\right)-1
$$

and $\sigma=\sigma_{W}$ solves the PDE

$$
\left(\partial_{x}^{2} \partial_{t} \sigma\right)^{2}=4 \partial_{x}^{2} \sigma\left(-2 x \partial_{x} \partial_{t} \sigma+2 \partial_{t} \sigma-\left(\partial_{x} \partial_{t} \sigma\right)^{2}\right)
$$

Remark For $w_{t}(u)=W\left(u^{2}-t\right)$ and $W(y)=\frac{1}{\mathrm{e}^{4 y+1}}$, the connection between $Q_{W}(s, t)=\operatorname{det}\left(1-\sqrt{W_{s, t}} \mathcal{K}^{\sin } \sqrt{w_{s, t}}\right)$ and these PDEs was already found in [Its - Izergin - Korepin - Slavnov, 1990] in the study of the impenetrable one dimensional Bose gas.

The second Lax equation

We consider the RH problem for U corresponding to $w=w_{t}$ so that

$$
U(\lambda ; s, t):=U^{\left(w_{t}\right)}(\lambda ; s)
$$

and we introduce the differential operator

$$
D_{\lambda, t}=\partial_{\lambda}+2 \lambda \partial_{t},
$$

that combines the dependence on the spectral parameter λ and the deformation parameter t.
Remark We recall that the jump matrix of $U^{\left(w_{t}\right)}$ is given by

$$
\left(\begin{array}{cc}
1 & 1-W\left(\lambda^{2}-t\right) \\
0 & 1
\end{array}\right)
$$

and $D_{\lambda, t} W\left(\lambda^{2}-t\right)=0$.

Proposition

We have $D_{\lambda, t} U(\lambda, s, t)=L(\lambda, s, t) U(\lambda, s, t)$, with

$$
L(\lambda, s, t)=\left(\begin{array}{cc}
2 \pi \mathrm{i} s+2 \partial_{t} \alpha(s, t) & -2 \partial_{t} \gamma(s, t) \\
2 \partial_{t} \gamma(s, t) & -2 \pi \mathrm{i} s-2 \partial_{t} \alpha(s, t)
\end{array}\right) .
$$

The compatibility condition

We end up with the system for U given by

$$
\partial_{s} U(\lambda, s, t)=M(\lambda, s, t) U(\lambda, s, t) \quad D_{\lambda, t} U(\lambda, s, t)=L(\lambda, s, t) U(\lambda, s, t)
$$

for which the compatibility condition reads as

$$
\partial_{s} L-D_{\lambda, t} M+[L, M]=0,
$$

and is equivalent to a coupled system of PDEs for $\alpha(s, t)$ and $\gamma(s, t)$, namely

$$
\begin{aligned}
& -8 \mathrm{i} \pi \gamma \partial_{t} \gamma+\partial_{t} \partial_{s} \alpha=0, \\
& 8 \pi \gamma\left(\pi s-\mathrm{i} \partial_{t} \alpha\right)+\partial_{t} \partial_{s} \gamma=0 .
\end{aligned}
$$

Remark

- The first equation is the t-derivative of $\partial_{s} \alpha=4 \pi \mathrm{i} \gamma^{2}$, already known.
- The second one, after taking another s-derivative and doing some manipulations, changing variable $x=2 \pi s$ and setting

$$
q(x, t)=2 \mathrm{i} \gamma\left(\frac{x}{2 \pi}, t\right)
$$

gives exactly the q-PDE.

The σ-PDE

Define $p(x, t)=-\partial_{x} \sigma(x, t)$, so that $q^{2}(x, t)=-\partial_{x}^{2} \sigma(x, t)=\partial_{x} p(x, t)$. We have

$$
q^{2}(x, t)=-4 \gamma^{2}\left(\frac{x}{2 \pi}, t\right), \quad p(x, t)=2 \mathrm{i} \alpha\left(\frac{x}{2 \pi}, t\right) .
$$

We can thus re-write the PDE as

$$
\partial_{x} \partial_{t} q=-2 x q+2 q \partial_{t} p .
$$

Multiplying with $\partial_{t} q$, we find

$$
\frac{1}{2} \partial_{x}\left(\left(\partial_{t} q\right)^{2}\right)=x \partial_{x}^{2} \partial_{t} \sigma+\partial_{x} \partial_{t} \sigma \partial_{x}^{2} \partial_{t} \sigma
$$

Integrating in x, we get

$$
\frac{1}{2}\left(\partial_{t} q\right)^{2}=x \partial_{x} \partial_{t} \sigma-\partial_{t} \sigma+\frac{1}{2}\left(\partial_{x} \partial_{t} \sigma\right)^{2} .
$$

Noticing that $\frac{\left(\partial_{t} q\right)^{2}}{2}=\frac{\left(\partial_{t}\left(\sigma^{2}\right)\right)^{2}}{8 q^{2}}=-\frac{\left(\partial_{x}^{2} \partial_{t} \sigma\right)^{2}}{8 \partial_{x}^{2} \sigma}$, one can finally obtain the PDE for σ.
Remark The analogue result in the Airy case involves the KdV bilinear equation.

Formula for the Fredholm determinant

The relation between $q(x, t)$ and the Fredholm determinant, given by

$$
\partial_{x}^{2} \log Q_{w}\left(\frac{x}{2 \pi}, t\right)=-q(x, t)^{2}, \quad x>0,
$$

can be deduced from the previous result

$$
\partial_{s} s \partial_{s} \log Q_{W}(s, t)=2 \int_{\mathbb{R}} \lambda w_{t}^{\prime}(\lambda) \phi(\lambda, s, t) \phi(-\lambda, s, t) \mathrm{d} \lambda .
$$

Indeed, by residue computation we obtain

$$
-\int_{\mathbb{R}} \lambda \phi(\lambda) \phi(-\lambda) w_{t}^{\prime}(\lambda) \mathrm{d} \lambda=2 \pi \mathrm{i}\left(\alpha+4 \pi \mathrm{i} s \gamma^{2}\right)=2 \pi \mathrm{i}\left(\alpha+s \partial_{s} \alpha\right)=2 \pi \mathrm{i} \partial_{s}(s \alpha),
$$

which after integration and derivation gives

$$
\partial_{s}^{2} \log Q_{w}(s, t)=16 \pi^{2} \gamma^{2}(s, t) .
$$

and after the change of variables this corresponds to the result for q.

Solution of the σ-PDE initial boundary value problem

The function W can be seen as scattering data for the solution $\sigma=\sigma_{W}(x, t)$ to the σ-PDE, in the following sense.

The solution of the σ-PDE with initial data

$$
\lim _{x \rightarrow 0} \frac{1}{x} \sigma(x, t)=: F(t), \quad t>-T
$$

where $F \in C^{1}(-T,+\infty), F^{\prime}(t) / t \in L^{1}(-T,+\infty)$, is $\sigma(x, t)=\log \operatorname{det}\left(1-\sqrt{W_{s, t}} \mathcal{K}^{\sin } \sqrt{W_{s, t}}\right)$ for $x=2 \pi s>0$ and $t<T$, with

$$
w_{s, t}(u)=-\frac{\pi}{2}\left(\mathcal{A}^{-1} F_{T}\right)\left(\sqrt{\frac{u^{2}}{4 s^{2}}-t+T}\right), \quad \text { where }
$$

- $F_{T}(s)=F\left(T-s^{2}\right)$;
- \mathcal{A} and \mathcal{A}^{-1} denote the Abel transform and its inverse, respectively

$$
\mathcal{A} f(y)=2 \int_{y}^{+\infty} \frac{f(r) r}{\sqrt{r^{2}-y^{2}}} \mathrm{~d} r, \quad y \in \mathbb{R}
$$

for C^{1}-functions $f: \mathbb{R} \rightarrow C$ with $\lim _{r \rightarrow+\infty} r f(r)=0$ and f is integrable and

$$
\mathcal{A}^{-1} F(r)=-\frac{1}{\pi} \int_{r}^{+\infty} \frac{F^{\prime}(y)}{\sqrt{y^{2}-r^{2}}} \mathrm{~d} y, \quad r \in \mathbb{R}
$$

Final remarks

- The final result comes from the fact that for any $T>t$ we have

$$
\lim _{x \rightarrow 0} \frac{1}{x} \sigma_{W}(x, t)=-\frac{4}{\pi} \int_{\sqrt{T-t}}^{\infty} \frac{w_{T}(r) r}{\sqrt{r^{2}-y^{2}}} \mathrm{~d} r=-\frac{2}{\pi}\left(\mathcal{A} w_{T}\right)(\sqrt{T-t}),
$$

a simple transformation between the initial data and the scattering data (coming from the simple asymptotics of the Fredholm determinant itself).

- This could in effect suggests that perhaps we should look for a PDE for $\frac{1}{x} \sigma_{w}(x, t)$ directly... to check!

Thank you!

