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#1 : state space and state vector

Postulate 1
“Associated to any isolated physical system is a complex vector space with inner
product (that is, a Hilbert space) known as the state space of the system. The system
is completely described by its state vector, which is a unit vector in the system’s state
space.”

Example The simplest quantum mechanical system (and the system which is most
used in the book) is the qubit.
A qubit has a two dimensional state space with |0⟩, |1⟩ forming an orthonormal basis
for that state space, so that the arbitrary state vector has the form

|ψ⟩ = a|0⟩+ b|1⟩

with |a|2 + |b|2 = 1.

Remark For real physical systems described in terms of qubits → Chapter 7.
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#2 : dynamics

Postulate 2 (discrete time)
“The evolution of a closed quantum system is described by a unitary transformation.
That is, the state |ψ⟩ of the system at time t1 is related to the state |ψ′⟩ of the system at
time t2 by

|ψ′⟩ = U|ψ⟩.

where U is a unitary operator (i.e. UU† = U†U = I) which depends only on the times t1
and t2.”

Example For the qubit, examples of U are X the bit flip, Z the phase flip, Y and H the
Hadamard gate.

Postulate 2’ (continuous time)
“The time evolution of the state of a closed quantum system is described by the
Schrödinger equation

iℏd |ψ⟩
dt

= H|ψ⟩

where ℏ is a constant (for us fixed to 1) and H is a fixed Hermitian operator (i.e.
H = H†) known as the Hamiltonian of the closed system.”

Remark Solving Schrödinger equation |ψ(t2)⟩ = exp(−iH(t2 − t1))|ψ(t1)⟩.
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#3 : measurements

Postulate 3
“Quantum measurements are described by a collection {Mm} of measurement
operators acting on the state space of the system being measured, where m refers to
the measurement outcomes that may occur in the experiment. If the state of the
quantum system is |ψ⟩ immediately before the measurement then

p(m) = ⟨ψ|M†
mMm|ψ⟩ = probability that m occurs

and the state after the measurement is Mm|ψ⟩√
⟨ψ|M†

mMm|ψ⟩
. The measurement operators

satisfy the completeness equation
∑

m M†
mMm = I, which expresses the fact that

probabilities has to sum up to 1.”

Example Measurement of a qubit in the computational basis is done by taking
M0 = |0⟩⟨0|,M1 = |1⟩⟨1|. Then if the state before measurement is |ψ⟩ = a|0⟩+ b|1⟩
one has

p(0) = ⟨ψ|M†
0 M0|ψ⟩ = ⟨ψ|M0|ψ⟩ = |a|2, p(1) = ⟨ψ|M†

1 M1|ψ⟩ = ⟨ψ|M1|ψ⟩ = |b|2,

and post-measurement states are respectively a
|a| |0⟩ and b

|b| |1⟩ (which are effectively
just |0⟩ and |1⟩ since they differ only by a multiplier of modulus 1.)
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Indistiguishability of non-orthogonal quantum states

Suppose |ψi⟩, i = 1, . . . , n are orthonormal states. Then it is possible to distinguish
them by using quantum measurements in the following way:

construct Mi = |ψi⟩⟨ψi | for each i = 1, . . . , n and M0 as the positive square root of
the positive operator I −

∑
i |ψi⟩⟨ψi | (so that the collection {Mm}n

m=0 satisfies the
completeness equation).

if the state |ψi⟩ is prepared then

p(i) = ⟨ψi |Mi |ψi⟩ = 1.

However non-orthogonal quantum states can’t be reliably distinguished.
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Projective measurement

Definition
A projective measurement is an observable M, i.e. Hermitian operator on the state
space of the system being observed. It has a spectral decomposition

M =
∑

m

mPm

where Pm is the orthogonal projector onto the eigenspace of eigenvalue m which is the
possible outcome of the observable. If |ψ⟩ is prepared then

p(m) = ⟨ψ|Pm|ψ⟩ = probability that m occurs

and the state after measurement is Pm|ψ⟩√
p(m)

.

Remark Postulate 3 reduces to a projective measurement when we require the general
measurement operators Mm to be orthogonal projectors : Hermitian operators such
that MmMm′ = δm,m′Mm.

Example On a qubit, Z is a projective measurement which decomposes as
Z = +1P1 − 1P−1 where P1 = |0⟩⟨0| and P−1 = |1⟩⟨1|.
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Heisenberg uncertainty principle

Average values of the observable M is given by

⟨M⟩ =
∑

m

mp(m) =
∑

m

m⟨ψ|Pm|ψ⟩ = ⟨ψ|M|ψ⟩.

Standard deviation associated to observation of M is given by

(∆(M))2 = ⟨(M − ⟨M⟩)2⟩ = ⟨M2⟩ − ⟨M⟩2.

If C,D are two observable, |ψ⟩ a quantum state, the Heisenberg uncertainty
principle states that

∆(C)∆(D) ≥ |⟨ψ| [C,D] |ψ⟩|
2

.
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Positive Operator-Valued Measure

Definition
A POVM is defined as a collection of positive operators {Em} such that

∑
m Em = I.

Notice that p(m) = ⟨ψ|Em|ψ⟩.

Example For a given collection {Mm} of general measurements, one can define a
POVM by taking the positive operators Em = M†

mMm.
For a projective measurement M =

∑
m mPm the POVM elements are Em = Pm.

Why introducing general measurements then?

General measurements are mathematically easier.

Important problems in quantum computation/information need general
measurements (e.g. optimal way to distinguish a set of quantum states).

Projective measurements are repeatable in the sense that: for |ψ⟩ being the initial
state, if the outcome of the measure is m then the post-measurement state is
|ψm⟩ = Pm|ψ⟩/

√
p(m) and applying again Pm does not change it, i.e.

⟨ψm|Pm|ψm⟩ = 1. There are measurements which do not have this property.

POVMs are best viewed as a special case of general measurements, providing the
simplest means by which one can study general measurement statistics, without
caring about post-measurement state.
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#4 : composite systems

Postulate 4
“The state space of a composite physical system is the tensor product of the state
spaces of the component physical systems. Moreover, if we have systems numbered
1, . . . , n, and system number i is prepared in the state |ψi⟩, the joint state of the total
system is |ψ1⟩ ⊗ · · · ⊗ |ψn⟩.”

Remark Projective measurements and unitary dynamics together with Postulate 4 give
general measurements (with properties as stated in Postulate 3).

Construct an ancilla system with state space M and orthonormal basis in 1-1
correspondence with possible outcomes of the measurement |m⟩.
Define U on Q ⊗ |0⟩ (here |0⟩ is any fixed state of M), as

U|ψ⟩|0⟩ =
∑

m

Mm|ψ⟩|m⟩.

Then U preserves inner products between states of Q ⊗ |0⟩ and thus it can be
extended to the all space Q ⊗ M as unitary operator.

Consider the projective measurement on Q ⊗ M given by orthogonal projectors
Pm = IQ ⊗ |m⟩⟨m| then one can obtain p(m) = ⟨ψ|M†

mMm|ψ⟩ and the
post-measurement state of M will be |m⟩ and of Q will be Mm|ψ⟩/

√
p(m).
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Entangled states

Definition
A state of a composite system that can’t be written as a product of states of its
component systems is called an entangled state.

Example |β00⟩ = |00⟩+|11⟩√
2

is an entangled state.

Indeed : suppose instead that there exist qubits |a⟩, |b⟩ such that |β00⟩ = |a⟩|b⟩. Then
by writing them in the computational basis

|a⟩ = a0|0⟩+ a1|1⟩, |b⟩ = b0|0⟩+ b1|1⟩.

we obtain
|β00⟩ = a0b0|00⟩+ a0b1|01⟩+ a1b0|10⟩+ a1b1|11⟩.

Thus we should have

a0b1 = 0, a1b0 = 0, a0b0 =
1√
2
= a1b1

which gives the contraddiction.
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Superdense Coding

The task
Alice wants to send two bits of classical information to Bob but she is only allowed to
send a single qubit to him.

This can be accomplished by using the entangled state |β00⟩ and following this
procedure.

A third part prepares the Bell state |β00⟩ and sends to Alice the first qubit
|ψA⟩ = (|0A⟩+ |1A⟩)/

√
2 and to Bob the second one |ψB⟩ = (|0B⟩+ |1B⟩)/

√
2.

Before send her qubit to Bob, Alice performs a transformation in function of the
message she wants Bob to receive:

00 → I → (|0⟩+ |1⟩)/
√

2, 01 → X → (|1⟩+ |0⟩)/
√

2,

10 → Z → (|0⟩ − |1⟩)/
√

2, 11 → iY → (−|1⟩+ |0⟩)/
√

2
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Alice sends...

Once Alice has sent her (transformed) qubit to Bob, he has in his hands one of the
following resulting states

|00⟩+ |11⟩√
2

= |β00⟩,
|10⟩+ |01⟩√

2
= |β01⟩

|00⟩ − |11⟩√
2

= |β10⟩,
−|10⟩+ |01⟩√

2
= |β11⟩

which are exactly the four states of the Bell basis, which is an orthonormal basis for a
two qubits space.
These states can then be distinguished by an appropriate quantum measurement. By
doing a measurement in the Bell basis Bob can determine which of the four possible bit
strings Alice sent.

Remark Notice that Alice never had to interact with the second qubit. If she only had
the opportunity to transmit a single classical bit, the task would have been impossible
to accomplish → Chapter 12.
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...and Bob decodes

In other words, to decode the information that Alice sent, Bob can do the following

apply a CNOT with control qubit being Alice’s qubit and target qubit being his own
qubit.

on the result Bob applies then the transformation H1I2 which gives him one of the
four states of the computational basis |00⟩, |01⟩, |10⟩, |11⟩, that tells him which two
bits information Alice wanted to send.

Example Suppose that Alice sent to Bob the qubit (|0⟩+ |1⟩)/
√

2 (willing to send him
the message 00) and so he has in his hands |β00⟩. Then

|β00⟩
CNOT−−−→ |β′

00⟩ = (|00⟩+ |10⟩)/
√

2
H1I2−−→ |β′′

00⟩ =
1√
2
( H|0⟩
=

|0⟩+|1⟩√
2

|0⟩+ H|1⟩
=

|0⟩−|1⟩√
2

|0⟩) = |00⟩

which tells Bob that Alice’s message was indeed 00.
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The density operator

Definition
Suppose that a quantum system is in one of the states |ψi⟩ with probability pi . Then
{|ψi⟩, pi} is called the ensamble of pure states of the system and the density operator
associated to it is

ρ =
∑

i

pi |ψi⟩⟨ψi |.

A quantum system whose state |ψ⟩ is known exactly is said to be in a pure state. In this
case the density operator is simply ρ = |ψ⟩⟨ψ|. Otherwise, ρ is in a mixed state.
Property tr(ρ2) = 1 if and only if ρ is in a pure state.

Theorem
An operator ρ is the density operator associated to some ensemble {pi , |ψi⟩} if and
only if it satisfies the conditions:

(Trace condition) ρ has trace equal to one.

(Positivity condition) ρ is a positive operator.
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Recovering the 4 postulates

1 Associated to any isolated physical system is a complex vector space with inner
product (that is, a Hilbert space) known as the state space of the system. The
system is completely described by its density operator ρ which is positive and of
trace 1.

2 The evolution of a closed quantum system is described by a unitary transformation
U. That is, the density operator ρ at t1 and the one ρ′ at t2 are related

ρ
U−→ ρ′ = UρU†.

3 Quantum measurements are described by a collection {Mm} of measurement
operators acting on the state space of the system being measured, where m refers
to the measurement outcomes. If the system is described by ρ then

p(m) = tr
(

M†
mMmρ

)
and the density operator of the system after measurement is M†

mρMm/ tr(M†
mMmρ).

4 The state space of a composite physical system is the tensor product of the state
spaces of the component physical systems. Moreover, if we have systems
numbered 1, . . . , n, and system number is described by the density operator ρi

then the composite system is described by ρ1 ⊗ · · · ⊗ ρn.
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Unitary freedom in the ensamble for density matrices
Example Consider the density operator

ρ =
3
4
|0⟩⟨0|+ 1

4
|1⟩⟨1|.

It is also obtained for a quantum system prepared in the states

|a⟩ =
√

3
4
|0⟩+

√
1
4
|1⟩, |b⟩ =

√
3
4
|0⟩ −

√
1
4
|1⟩

both with probability 1/2.
Question What class of ensambles of states does give rise to a particular density
matrix?

Theorem
For normalized sets of states |ψi⟩, |φj⟩ with probability distribution pi , qj , the density
matrix is the same

ρ =
∑

i

pi |ψi⟩⟨ψi | =
∑

j

qj |φj⟩⟨φj |

if and only if √
pi |ψi⟩ =

∑
j

uij
√

qj |φj⟩

for some unitary matrix uij .
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Reduced density operator and quantum entanglement
The reduced density operator describes sub-systems of composite quantum systems.

Definition

Suppose there are two physical systems A,B described by the density operator ρAB .
The reduced density operator for the system A is defined by

ρA = tr
B
(ρAB)

where the partial trace over B acts as

tr
B
(|a1⟩⟨a2| ⊗ |b1⟩⟨b2|) = |a1⟩⟨a2| tr (|b1⟩⟨b2|) .

Another Hallmark of quantum entanglement. Consider again the Bell state |β00⟩. The
density operator for a system in the pure state |β00⟩ is

ρ =

(
|00⟩+ |11⟩√

2

)(
⟨00|+ ⟨11|√

2

)
=

1
2
(|00⟩⟨00|+ |11⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨11|) .

Tracing out the second qubit one finds a density operator for the first qubit which is

ρ1 = tr
2
(ρ) = · · · = I

2

which is a mixed state!
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Schmidt decomposition theorem

Theorem
Suppose |ψ⟩ is a pure state of a composite system AB. Then there exist orhonormal
states for the system A, |iA⟩ and orthonormal states for the system B, |iB⟩ such that

|ψ⟩ =
∑

i

λi |iA⟩|iB⟩

with λi real non-negative numbers satisfying
∑

i λ
2
i = 1.

Remark 1 Notice that taking the reduced density operator for the systems A and B we
obtain respectively

ρA =
∑

i

λ2
i |iA⟩⟨iA|, ρB =

∑
i

λ2
i |iB⟩⟨iB|.

The fact that ρA, ρB shares the same eigenvalues implies that they share as well many
other properties which depend on the eigenvalues.
Remark 2 λi are called Schmidt coefficients and the number of non-zero λi is called the
Schmidt number of |ψ⟩ and it quantifies the amount of entanglement of the state |ψ⟩.
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Purification procedure

Definition
For a given quantum system A with density operator

ρA =
∑

i

pi |iA⟩⟨iA|,

a purification isa pure state of a composite system |AR⟩, where R is an artificial
quantum system having the same state space of A, such that

tr (|AR⟩⟨AR|) = ρA.

The pure state |AR⟩ is built up by taking an orthonormal basis |iR⟩ and defining

|AR⟩ =
∑

i

√
pi |iA⟩|iR⟩.

Remark For application in quantum computation / quantum information → see Part III.
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The setting

“To obtain Bell’s inequality, we’re going to do a thought experiment, which we will
analyze using our common sense notions of how the world works”.

The experiment Charlie prepares two particles and he sends one particle to Alice, and
the second particle to Bob, which are going to perform some measurements of physical
properties PQ ,PR and PS ,PT respectively.

Assumptions
1. They perform their measurement simultaneously so that they cannot disturb one the
result of the other and also they are far enough a part so that measurement on one
system cannot influence measurement on the other.
2. These are objective properties, which values Q,R,S,T are revealed by the
experiment but exists independently of it.
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Proof of CHSH inequality

CHSH inequality
The CHSH inequality states that

E(QS) + E(RS) + E(RT )− E(QT ) ≤ 2.

Notice that
QS + RS + RT − QT = (Q + R)S + (R − Q)T

and either (Q + R)S either (R − Q)T = 0 since R,Q = ±1. In both case then
QS + RS + RT − QT = ±2.
Denoting p(q, r , s, t) the probability that right before the measurement the system
is in a state such that Q = q,R = r ,S = s,T = t , we can write

E (QS + RS + RT − QT ) =
∑
qrst

p(q, r , s, t)(qs+rs+rt−qt) ≤
∑
qrst

p(q, r , s, t)2 ≤ 2.

And also

E (QS + RS + RT − QT ) =
∑
qrst

p(q, r , s, t)qs +
∑
qrst

p(q, r , s, t)rs

+
∑
qrst

p(q, r , s, t)rt −
∑
qrst

p(q, r , s, t)qt

= E(QS) + E(RS) + E(RT )− E(QT ).
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QM violation

Suppose that Charlie prepares a quantum system in the two qubits state

|ψ⟩ = |01⟩ − |10⟩√
2

and it sends the first qubit to Alice while the second to Bob.
They perform measurements of the following observables

Q = Z1, S =
−Z2 − X2√

2
,

R = X1, T =
Z2 − X2√

2
.

Direct computation shows that

⟨QS⟩ = 1√
2
= ⟨RS⟩ = ⟨RT ⟩, ⟨QT ⟩ = − 1√

2

which gives the contraddiction with CHSH inequality since

⟨QS⟩+ ⟨RS⟩+ ⟨RT ⟩ − ⟨QT ⟩ = 2
√

2 > 2!
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Tsirelson’s inequality

Moreover, this is the maximal violation of CHSH inequality since the Tsirelson’s
inequality assures that

⟨QS⟩+ ⟨RS⟩+ ⟨RT ⟩ − ⟨QT ⟩ ≤ 2
√

2

for any Q,R,S,T written as Q = q⃗ · σ⃗,R = r⃗ · σ⃗,S = s⃗ · σ⃗,T = t⃗ · σ⃗ and q⃗, r⃗ , s⃗, t⃗ being
unitary vectors in R3.
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Conclusion

Experiments with photons confirmed the prediction of QM equation

⟨QS⟩+ ⟨RS⟩+ ⟨RT ⟩ − ⟨QT ⟩ = 2
√

2

resolving the paradox in our computation.

“The CHSH inequality is not obeyed by Nature.”

Question What was wrong in our computation to get CHSH inequality then?

Many studies pointed out that the answer is hidden behind the two assumptions we
made:

1 realism, the fact that the physical properties PQ ,PR ,PS ,PT to have definite values
Q,R,S,T which exist independent of observation;

2 locality, the fact that Alice performing her measurement does not influence the
result of Bob’s measurement.
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