
Toeplitz determinants related to the discrete Painlevé II hierarchy

Sofia Tarricone

Institut de Physique Théorique, CEA Paris-Saclay

CORTIPOM Workshop
CIRM, Marseille

12 July 2023

Based on a joint work with T. Chouteau SIGMA 19 (2023) 030

S. TARRICONE Toeplitz determinants and dPII CIRM Marseille, 12 July 2023 1 / 31



1 Higher order Tracy-Widom formula

2 Toeplitz determinants in random partitions

3 Connection with Orthogonal Polynomials on the Unit Circle

4 Continuous limit

S. TARRICONE Toeplitz determinants and dPII CIRM Marseille, 12 July 2023 2 / 31



Outline

1 Higher order Tracy-Widom formula

2 Toeplitz determinants in random partitions

3 Connection with Orthogonal Polynomials on the Unit Circle

4 Continuous limit

S. TARRICONE Toeplitz determinants and dPII CIRM Marseille, 12 July 2023 3 / 31



The Airy kernel

The Airy function Ai(x) is a rapidly decaying at +∞ real
solution of the Airy equation

v ′′(x) = xv(x)

which can be represented by

Ai(x) =
1
π

∫ +∞

0
cos

(
t3

3
+ xt

)
dt , x ∈ R.

The Airy kernel K Ai(x , y) is then built in two equivalent ways

K Ai(x , y) :=
Ai(x)Ai′(y)− Ai′(x)Ai(y)

x − y
=

∫ +∞

0
Ai(x + t)Ai(y + t)dt , (x , y) ∈ R2

and the integral operator KAi acting on f ∈ L2(R) through the Airy kernel acts like

KAif (x) =
∫
R

K Ai(x , y)f (y)dy .
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The Airy determinantal point process

[Soshnikov, 2000] Hermitian locally trace class operator K on L2(R) defines a determinantal point
process on R if and only if 0 ≤ K ≤ 1. If the corresponding point process exists it is unique.

↓

The Airy DPP PAi is the point process on R described by correlation functions

ρ(x1, . . . , xk ) = det
i,j=1,...k

K Ai(xi , xj ).

ξ

Properties Each configuration in PAi counts almost surely an infinite number of points and a
largest point. The probability distribution particle of the largest point is given by

F (s) := det
(

1−KAi|(s,+∞)

)
= 1 +

∞∑
n≥1

(−1)n

n!

∫
(s,∞)n

det
i,j=1,...n

K Ai(xi , xj )dx1 . . . dxn.
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The Tracy-Widom formula

[Tracy - Widom, 1994] The Fredholm determinant F (s) satisfies

d2

ds2
lnF (s) = −u2(s)

where u is the Hastings-McLeod solution of the Painlevé II equation, i.e. the unique solution of the
boundary value problem

u′′(s) = su(s) + 2u3(s)

together with the condition u(s) ∼ Ai(s) for s → +∞.

Integrating, we have

F (s) = exp

(
−
∫ +∞

s
(r − s)u2(r)dr

)
.

Remark [Picard, 1889 - Painlevé, 1900 - Gambier, 1910] Painlevé equations are 6 nonlinear
second order ODEs which do not have movable branch points and generically do not admit
solutions in terms of classical special functions.
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Higher order Airy kernels

For any n ≥ 1, we can construct KAin the integral operator acting through the n-th order Airy kernel

K Ain (x , y) :=
∫ +∞

0
Ain(x + t)Ain(y + t)dt ,

Ain being the n-th Airy function

Ain(x) =
1
π

∫ +∞

0
cos

(
t2n+1

2n + 1
+ xt

)
dt , x ∈ R.

KAin defines a new DPP with largest particle. The Fredholm determinant

Fn(s) := det
(

1−KAin |(s,+∞)

)
is the distribution function of the largest particle.
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Generalization of the Tracy-Widom formula

[Cafasso - Claeys - Girotti, 2019] The Fredholm determinant Fn(s) satisfies

d2

ds2
lnFn(s) = −(u(n)((−1)n+1s))2

where u = u(n) solves the n-th member of the homogeneous Painlevé II hierarchy with boundary
condition u(s) ∼ Ain(s) for s → +∞.

Or again, integrating

Fn(s) = exp

(
−
∫ +∞

s
(r − s)

(
u(n)((−1)n+1r)

)2
dr
)
.

Remark This result was conjectured in [Le Doussal - Majumdar - Schehr , 2018] where Fn(s) was
used to describe the limiting edge behavior of the distribution of momenta of free fermions at zero
temperature.
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The Painlevé II hierarchy

The Painlevé II hierarchy is a sequence of nonlinear ordinary differential equations(
d
ds

+ 2u
)
Ln

[
us − u2

]
= su + αn, n ≥ 1

where Ln[us − u2] are differential polynomilas in u called Lenard polynomials.

They are computed through the following recursion

d
ds
Ln+1 [w ] =

(
d3

ds3
+ 4w

d
ds

+ 2ws

)
Ln [w ] , n ≥ 0 with L0 [w ] =

1
2
,

replacing w = us − u2.

Examples

n = 1 : u′′ − 2u3 = su + α1,

n = 2 : u′′′′ − 10u(u′)2 − 10u2u′′ + 6u5 = su + α2,

n = 3 : u′′′′′′ − 14u2u′′′′ − 56uu′u′′′ − 70(u′)2u′′ − 42u(u′′)2 + 70u4u′′

+ 140u3(u′)2 − 20u7 = su + α3.
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And its Lax pair

[Flaschka - Newell, 1980,Clarkson - Joshi - Mazzocco, 2006] The n-th member of the Painlevé II
hierarchy admits the Lax pair representation in terms of the differential 2× 2 system

∂Ψ

∂λ
= M(n)Ψ,

∂Ψ

∂s
= LΨ,

where the coefficients are
L(λ, s) = −iλσ3 + uσ1.

M(n)(λ, s) =

 2n∑
j=0

Aj (iλ)j − it

σ3 +

2n−1∑
j=0

(
Bjσ+ + Cjσ−

)
(iλ)j +

αn

λ
σ1,

with σi being the Pauli’s matrices, σ± are the diagonal elementary matrices and Aj ,Bj ,Cj that are
differential polynomials in u defined through closed formulae involving the Lenard polynomials.

This means that, for every n, the compatibility condition

∂M(n)

∂t
−

∂L
∂λ

+ M(n)L− LM(n) = 0 is equivalent to PII(n)[αn].
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Back to multicritical random partitions

[Okunkov, 2001] On the set of all partitions consider the Schur measures

PSc.(λ) = Z−1sλ [θ1, . . . , θn]
2 ,

where sλ can be computed as

sλ [θ1, . . . , θn] = det
i,j

hλi−i+j [θ1, . . . , θn] ,

with
∑

k≥0 hk zk = ev(z), v(z) =
∑n

i=1
θi
i z i and Z = e

∑n
i=1

θ2
i
i .

Remark For n = 1 with PP.Pl.(λ) = PSc.(λ) with θ1 = θ.

The probability distribution of the first part of such a random partition is given by certain Toeplitz
determinants

PSc. (λ1 ≤ k) = e−
∑n

i θ̂2
i /i Dk−1

(
φ(n)

[
θ̂1, . . . , θ̂n

])
,

where the symbol is

φ(n)
[
θ̂1, . . . , θ̂n

]
(z) = ew(z), w(z) = v(z) + v(z−1), θi → θ̂i = (−1)i+1θi .
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Recall Harriet’s talk

[Betea–Bouttier–Walsh , 2021] Let

θi = (−1)i+1 (n − 1)!(n + 1)!
(n − i)!(n + i)!

θ = (−1)i+1θ̂i ,

then the limiting behavior of the distribution of the first part is described, for certain
b = b(n), d = d(n), by

lim
θ→∞

Pn
θ

(
λ1 − bθ

(θd)
1

2n+1

< s

)
= Fn(s).

Remark For n = 1, it recovers the result of [Baik - Deift - Johannson, 1999], which gave the final
answer to the Ulam problem for the limiting behavior of the lenght of the longest increasing
subsequence of uniform random permutations.
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Our Toeplitz determinants

Let φ = φ(n) [θ1, . . . , θn] (z) = ew(z) where

w(z) := v(z) + v(z−1), v(z) =
n∑

i=1

θi

i
z i z ∈ S1

Let Tk (φ) being the k -th Toeplitz matrix associated to the symbol φ(z)

Tk (φ) =


φ0 φ−1 . . . φ−k+1 φ−k
φ1 φ0 . . . φ−k+2 φ−k+1
...

...
...

...
φk−1 φk−2 . . . φ0 φ−1
φk φk−1 . . . φ1 φ0


where for every h ∈ Z, φh is the h-th Fourier coefficient of φ(z), namely

φh =

∫ π

−π
e−ihαφ(eiα)

dα
2π

, so that
∑
h∈Z

φhzh = φ(z).

The Toeplitz determinants Dk = Dk (φ) are defined as

Dk := det(Tk (φ))
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Borodin formula for n = 1

[Borodin, Adler - Van Moerbeke, Baik, 2000] In the case n = 1, for every k ≥ 1 we have

Dk Dk−2

D2
k−1

= 1− x2
k

where xk solves the so called discrete Painlevé II equation, which corresponds to the second
order nonlinear difference equation

θ(xk+1 + xk−1)(1− x2
k ) + kxk = 0

with initial conditions x0 = −1, x1 = φ1/φ0.

Remark Borodin’s method is based on the identification of Dk to some quantities related to the
discrete Bessel determinantal point process⇝ Mattia Cafasso’s talk!
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The global picture

n=1

n>1

Discrete

PP.Pl. (λ1 ≤ k) = e−θ2
Dk−1(φ) with

φ = φ(1) [θ1 = θ] (z) and

Dk−2Dk/D2
k−1 = 1− x2

k

with xk solving

dPII : θ(xk+1 + xk−1)(1− x2
k ) + kxk = 0.

PSc. (λ1 ≤ k) = e−
∑N

i θ̂2
i /i Dk−1(φ) with

φ = φ(n)
[
θ̂1, . . . , θ̂n

]
(z) and

what is the recursion relation for Dk ?

Continuous

lim
θ→∞

PP.Pl.

(
λ1 − 2θ

θ
1
3

≤ s

)
= F (s)

and
∂2

s log F (s) = −u2(s)

with u solving

PII : u′′(s) = 2u3(s) + su(s).

limθ→∞ PSc.

(
λ1−bθ

(dθ)
1

2n+1
≤ s

)
= Fn(s) and

∂2
s log Fn(s) = −u2((−1)n+1s) with u solving

the n-th higher order analogue of PII.
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Final statement

Theorem (Chouteau - T., 2022)
For any fixed n ≥ 1, for the Toeplitz determinants Dk , k ≥ 1, we have

Dk Dk−2

D2
k−1

− 1 = −x2
k

where now xk solves the 2n order nonlinear difference equation

kxk +
(

vk + vk Permk − 2xk∆
−1 (xk − (∆ + I)xk Permk )

)
Ln(0) = 0

where L is a discrete recursion operator that acts as follows

L(uk ) :=
(

xk+1

(
2∆−1 + I

)
((∆ + I) xk Permk − xk ) + vk+1 (∆ + I)− xk xk+1

)
uk ,

and L(0) = θnxk+1. Here vk := 1− x2
k , ∆ denotes the difference operator ∆ : uk → uk+1 − uk

and Permk is the transformation

Permk : C
[(

xj
)

j∈[[0,2k ]]

]
−→ C

[(
xj
)

j∈[[0,2k ]]

]
P
(
(xk+j )−k⩽j⩽k

)
7−→ P

(
(xk−j )−k⩽j⩽k

)
.

S. TARRICONE Toeplitz determinants and dPII CIRM Marseille, 12 July 2023 17 / 31



The first equations of the hierarchy

n = 1 : kxk + θ1(xk+1 + xk−1)(1− x2
k ) = 0, ← discrete Painlevé II equation

n = 2 : kxk + θ1(1− x2
k ) (xk+1 + xk−1)

+ θ2(1− x2
k )
(

xk+2(1− x2
k+1) + xk−2(1− x2

k−1)− xk (xk+1 + xk−1)
2
)
= 0,

n = 3 : kxk + θ1(1− x2
k ) (xk+1 + xk−1)

+ θ2(1− x2
k )
(

xk+2(1− x2
k+1) + xk−2(1− x2

k−1)− xk (xk+1 + xk−1)
2
)

+ θ3(1− x2
k )
(

x2
k (xk+1 + xk−1)

3 + xk+3(1− x2
k+2)(1− x2

k+1) + xk−3(1− x2
k−2)(1− x2

k−1)
)

+ θ3(1− x2
k )
(
−2xk (xk+1 + xk−1)(xk+2(1− x2

k+1) + xk−2(1− x2
k−1))

)
+ θ3(1− x2

k )
(
−xk−1x2

k−2(1− x2
k−1)− xk+1x2

k+2(1− x2
k+1)

)
+ θ3(1− x2

k ) (−xk+1xk−1(xk+1 + xk−1)) = 0.

Remark Similar discrete equations appeared previously in [Periwal-Schewitz, 1990] in the study of
some unitary matrix integrals.
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Orthogonal Polynomials on the Unit Circle

We consider the measure for z = eiα ∈ S1 given by

dµ(α) = φ(eiα)
dα
2π

= ew(eiα) dα
2π

.

The family {pk (z)}k∈N of orthogonal polynomials on the unitary circle (OPUC) w.r.t. the measure
is given by

pk (z) = κk zk + . . . κ0, κk > 0

such that the following relation holds for any index k , h∫ π

−π
pk (eiα)ph(eiα)

dµ(α)
2π

= δk,h.

The analogue monic orthogonal polynomials πk (z) are pk (z) = κkπk (z).
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Relation with the Toeplitz determinants

A very well known formula of pk (z) in terms of the Toeplitz determinants Dk gives

pk (z) =
1√

Dk Dk−1
det


φ0 φ−1 . . . φ−k+1 φ−k
φ1 φ0 . . . φ−k+2 φ−k+1
...

...
. . .

...
...

φk−1 φk−2 . . . φ0 φ−1
1 z . . . zk−1 zk

 , k ≥ 1,

from which in particular one deduces that the leading coefficient of pk (z) is related to the ratio of
consecutive Toeplitz determinants as

Dk−1

Dk
= κ2

k .
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Riemann–Hilbert problem associated to OPUC

For any fixed k ≥ 0, the function Y (z) := Y (z, k ; θi ) : C→ GL(2,C) has the following properties

(1) Y (z) is analytic for every z ∈ C \ S1;

(2) Y (z) has continuous boundary values Y±(z) are related for all z ∈ S1 through

Y+(z) = Y−(z)JY (z), with JY (z) =
(

1 z−k ew(z)

0 1

)
;

(3) Y (z) is normalized at∞ as

Y (z) ∼

I +
∞∑
j=1

Yj (k , θi )

z j

 zkσ3 , z →∞,

where σ3 denotes the Pauli’s matrix σ3 :=

(
1 0
0 −1

)
.
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Solution of this R–H problem

[Baik - Deift - Johansson, 1999] The R–H problem admits a unique solution Y (z) written as

Y (z) =

(
πk (z) C

(
y−kπk (y)ew(y)) (z)

−κ2
k−1π

∗
k−1(z) −κ2

k−1C
(

y−kπ∗
k−1(y)e

w(k)
)
(z)

)
,

where π∗
k−1(z) is defined as the polynomial of the same degree of πk−1(z) such that

π∗
k−1(z) := zkπk−1

(
z̄−1

)
and (Cf (y))(z) is the Cauchy transform of f

(Cf (y)) (z) :=
1

2πi

∫
S1

f (y)
y − z

dy .

Moreover, det(Y (z)) ≡ 1.

Remark This is an extension of the R–H approach to orthogonal polynomials on the real line
formulated by Fokas–Its–Kitaev (1991).
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Formula for the Toeplitz determinants

For every fixed k ≥ 0, the unique solution Y (z) of the R–H problem evaluated in z = 0 gives

Y (0, k ; θi ) =

(
xk κ−2

k
−κ2

k−1 xk

)
,

with xk := πk (0) and κk the leading coefficient of pk (z).

Remark Since detY (0, k ; θi ) = 1 for every k ≥ 1 we have

κ2
k−1

κ2
k

= 1− x2
k

It follows directly that for every k ≥ 1 we have the recursion for the Toeplitz determinats

Dk−2Dk

D2
k−1

= 1− x2
k .
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The new Lax pair for the dPII hierarchy

Now we construct the function

Ψ(z, k ; θi ) :=

(
1 0
0 κ−2

k

)
Y (z, k ; θj )

(
1 0
0 zk

)
ew(z)

σ3
2 .

Now Ψ(z, k) solves the following system

Ψ(z, k + 1) = U(z, k)Ψ(z, k), ∂zΨ(z, k) = T (z, k)Ψ(z, k)

with

U(z, k) :=
(

z + xk xk+1 −xk+1
−(1− x2

k+1)xk 1− x2
k+1

)
,

T (z, k) := T1(k)zn−1 + T2(k)zn−2 + ...+ T2n+1(k)z−n−1,

where T1(n) =
θN
2 σ3 and the others Tℓ(k) are obtained in terms of xk−ℓ, . . . , xk+ℓ explicitely, with

xk solving the n-th equation of the discrete Painlevé II hierarchy.

Remark This comes from the compatibility condition of the system for Ψ, obtained by exchanging
the difference and differential operators, namely the condition

σ+ = T (z, k + 1)U(z, k)− U(z, k)T (z, k).

S. TARRICONE Toeplitz determinants and dPII CIRM Marseille, 12 July 2023 25 / 31



Examples n = 1,2
⇝ For n = 1 the matrix T (z, k) is

T (z, k) =
θ1

2

(
1 0
0 −1

)
+

1
z

(
n −θ1xk+1

−θ1vk xk−1 0

)
+

θ1

z2

(
1
2 − x2

k xk
vk xk x2

k −
1
2

)

and xk solves the dPII equation.

⇝ For n = 2 the matrix T (z, k) is

T (z, k) = z
θ2

2

(
1 0
0 −1

)
+

(
θ1
2 −θ2xk+1

−θ2xk−1vk − θ1
2

)
+

1
z

(
k − θ2xk−1xk+1vk −θ1xk+1 − θ2(vk+1xk+2 − xk x2

k+1)(
−θ1xk−1 − θ2(vk−1xk−2 − xk x2

k−1)
)

vk θ2xk−1xk+1vk

)

+
1
z2

(
−θ2vk (xk xk−1 + xk xk+1) +

θ1
2 (vk − x2

k ) −θ2(vk xk−1 + x2
k xk+1)

−θ2(vk xk+1 + x2
k xk−1)vk θ2vk (xk xk−1 + xk xk+1)−

θ1
2 (vk − x2

k )

)

+
θ2

z3

(
1
2 − x2

k xk
vk xk x2

k −
1
2

)

and xk solves the second equation of the dPII hierarachy.

Here vk = 1− x2
k .
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Cresswell-Joshi Lax pair

[Cresswell - Joshi, 1998] defined the discrete Painlevé II hierarchy as a sequence of discrete
nonlinear equations of order 2n for each n for xk , starting with the discrete Painlevé II and
admitting a continuous limit to the classical Painlevé II hierarchy.

They introduced it as the compatibility condition of the system

Φ(z, k + 1) = L(z, k)Φ(z, k) ∂zΦ(z, k) = M(z, k)Φ(z, k)

i.e. as the equation
∂

∂z
L(z, k) = M(z, k + 1)L(z, k)− L(z, k)M(z, k),

where L(z, k) :=
(

z xk
xk 1/z

)
and M(z, k) :=

(
Ak (z) Bk (z)
Ck (z) −Ak (z)

)
with Ak , Bk and Ck written in

integer powers of z (from zn to z−n) with coefficients depending on xk .

Remark The relation with the Cresswell-Joshi Lax pair is given by

Φ(z, k) := σ3

(
z−k+3/2 0

0 z−k+1/2

)(
1 0

−xk−1 1

)
Ψ(z2, k − 1).
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The first continuous limit

Main point
The Toeplitz determinants satisfy a recursion relation which is the discrete analogue of the
generalized Tracy-Widom formula for the higher order Airy Fredholm determinants.

Recall the B–B–W(=B–D–J) result for n = 1: limθ→∞ PSc.

(
λ1−2θ
θ1/3 ≤ s

)
= F (s).

In the limit for θ →∞, taking k = sθ1/3 + 2θ or s = (k − 2θ)θ−1/3

Dk Dk−2

D2
k−1

− 1 = −x2
k , xk+1 + xk−1 = −

kxk

θ(1− x2
k )

B–B–W
y xk = (−1)k θ

−1/3u(s)
y xk = (−1)k θ

−1/3u(s)

∂2
s log F (s) = −u2(s), u′′(s) = 2u3(s) + tu(s)

Painlevé II equation

This recovers the Tracy-Widom formula (1994) for F (s) = det(1−KAi|(s,+∞)).
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The other continuous limits

Recall the B–B–W result for n = 2: limθ→∞ PSc.

(
λ1− 3

2 θ

(4−1θ)1/5 ≤ s
)

= F2(s).

In the limit for θ →∞, taking k = s
(

θ
4

)1/5
+ 3

2 θ (or s =
(

k − 3
2 θ
)
θ−

1
5 4

1
5 )

Dk Dk−2

D2
k−1

− 1 = −x2
k , kxk + θ1vk

(
xk+1 + xk−1

)
+θ2vk

(
xk+2vk+1 + xk−2vk−1 − xk (xk+1 + xk−1)

2
)

= 0

B–B–W
y xk = (−1)k

(
θ

4

)−1/5
u(s)

y xk = (−1)k
(

θ

4

)−1/5
u(s) θ1 = θ, θ2 =

θ

4

∂2
s log F2(s) = −u2(s), u′′′′ − 10u(u′)2 − 10u2u′′ + 6u5 = −su

2nd eq. of the Painlevé II hierarchy

which recovers the generalized Tracy-Widom formula for the higher order Airy kernels
[Cafasso–Claeys–Girotti, 2019] for n = 2. And so on ...

Remark This gives an alternative continuous limit w.r.t. the one proposed by Cresswell – Joshi.
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Thank you!
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