Toeplitz determinants related to the discrete Painlevé II hierarchy

Sofia Tarricone

Institut de Physique Théorique, CEA Paris-Saclay

CORTIPOM Workshop

CIRM, Marseille
12 July 2023
Based on a joint work with T. Chouteau SIGMA 19 (2023) 030

(1) Higher order Tracy-Widom formula
(2) Toeplitz determinants in random partitions

3 Connection with Orthogonal Polynomials on the Unit Circle

4 Continuous limit

Outline

(1) Higher order Tracy-Widom formula

2 Toeplitz determinants in random partitions

(3) Connection with Orthogonal Polynomials on the Unit Circle

4 Continuous limit

The Airy kernel

The Airy function $\operatorname{Ai}(x)$ is a rapidly decaying at $+\infty$ real solution of the Airy equation

$$
v^{\prime \prime}(x)=x v(x)
$$

which can be represented by

$$
\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{+\infty} \cos \left(\frac{t^{3}}{3}+x t\right) d t, x \in \mathbb{R}
$$

The Airy kernel $K^{\text {Ai }}(x, y)$ is then built in two equivalent ways

$$
K^{\mathrm{Ai}}(x, y):=\frac{\operatorname{Ai}(x) \operatorname{Ai}^{\prime}(y)-\operatorname{Ai}^{\prime}(x) \operatorname{Ai}(y)}{x-y}=\int_{0}^{+\infty} \operatorname{Ai}(x+t) \operatorname{Ai}(y+t) d t,(x, y) \in \mathbb{R}^{2}
$$

and the integral operator $\mathcal{K}^{\text {Ai }}$ acting on $f \in L^{2}(\mathbb{R})$ through the Airy kernel acts like

$$
\mathcal{K}^{\mathrm{Ai}} f(x)=\int_{\mathbb{R}} K^{\mathrm{Ai}}(x, y) f(y) d y
$$

The Airy determinantal point process

[Soshnikov, 2000] Hermitian locally trace class operator \mathcal{K} on $L^{2}(\mathbb{R})$ defines a determinantal point process on \mathbb{R} if and only if $0 \leq \mathcal{K} \leq 1$. If the corresponding point process exists it is unique.

The Airy DPP $\mathbb{P}^{\text {Ai }}$ is the point process on \mathbb{R} described by correlation functions

$$
\rho\left(x_{1}, \ldots, x_{k}\right)=\operatorname{det}_{i, j=1, \ldots k} K^{\mathrm{Ai}}\left(x_{i}, x_{j}\right)
$$

Properties Each configuration in $\mathbb{P}^{\text {Ai }}$ counts almost surely an infinite number of points and a largest point. The probability distribution particle of the largest point is given by

$$
F(s):=\operatorname{det}\left(1-\left.\mathcal{K}^{\mathrm{Ai}}\right|_{(s,+\infty)}\right)=1+\sum_{n \geq 1}^{\infty} \frac{(-1)^{n}}{n!} \int_{(s, \infty)^{n}} \operatorname{det}_{i, j=1, \ldots n} K^{\mathrm{Ai}}\left(x_{i}, x_{j}\right) d x_{1} \ldots d x_{n} .
$$

The Tracy-Widom formula

[Tracy - Widom, 1994] The Fredholm determinant $F(s)$ satisfies

$$
\frac{d^{2}}{d s^{2}} \ln F(s)=-u^{2}(s)
$$

where u is the Hastings-McLeod solution of the Painlevé II equation, i.e. the unique solution of the boundary value problem

$$
u^{\prime \prime}(s)=s u(s)+2 u^{3}(s)
$$

together with the condition $u(s) \sim \operatorname{Ai}(s)$ for $s \rightarrow+\infty$.
Integrating, we have

$$
F(s)=\exp \left(-\int_{s}^{+\infty}(r-s) u^{2}(r) d r\right)
$$

Remark [Picard, 1889 - Painlevé, 1900-Gambier, 1910] Painlevé equations are 6 nonlinear second order ODEs which do not have movable branch points and generically do not admit solutions in terms of classical special functions.

Higher order Airy kernels

For any $n \geq 1$, we can construct $\mathcal{K}^{\mathrm{Ai}_{n}}$ the integral operator acting through the n-th order Airy kernel

$$
K^{\mathrm{Ai}_{n}}(x, y):=\int_{0}^{+\infty} \operatorname{Ai}_{n}(x+t) \operatorname{Ai}_{n}(y+t) d t
$$

Ai_{n} being the n-th Airy function

$$
\operatorname{Ai}_{n}(x)=\frac{1}{\pi} \int_{0}^{+\infty} \cos \left(\frac{t^{2 n+1}}{2 n+1}+x t\right) d t, x \in \mathbb{R}
$$

$\mathcal{K}^{\mathrm{Ai}_{n}}$ defines a new DPP with largest particle. The Fredholm determinant

$$
F_{n}(s):=\operatorname{det}\left(1-\left.\mathcal{K}^{\mathrm{Ai}_{n}}\right|_{(s,+\infty)}\right)
$$

is the distribution function of the largest particle.

Generalization of the Tracy-Widom formula

[Cafasso - Claeys - Girotti, 2019] The Fredholm determinant $F_{n}(s)$ satisfies

$$
\frac{d^{2}}{d s^{2}} \ln F_{n}(s)=-\left(u^{(n)}\left((-1)^{n+1} s\right)\right)^{2}
$$

where $u=u^{(n)}$ solves the n-th member of the homogeneous Painlevé II hierarchy with boundary condition $u(s) \sim A i_{n}(s)$ for $s \rightarrow+\infty$.

Or again, integrating

$$
F_{n}(s)=\exp \left(-\int_{s}^{+\infty}(r-s)\left(u^{(n)}\left((-1)^{n+1} r\right)\right)^{2} d r\right)
$$

Remark This result was conjectured in [Le Doussal - Majumdar - Schehr , 2018] where $F_{n}(s)$ was used to describe the limiting edge behavior of the distribution of momenta of free fermions at zero temperature.

The Painlevé II hierarchy

The Painlevé II hierarchy is a sequence of nonlinear ordinary differential equations

$$
\left(\frac{d}{d s}+2 u\right) \mathcal{L}_{n}\left[u_{s}-u^{2}\right]=s u+\alpha_{n}, \quad n \geq 1
$$

where $\mathcal{L}_{n}\left[u_{s}-u^{2}\right]$ are differential polynomilas in u called Lenard polynomials.
They are computed through the following recursion

$$
\frac{d}{d s} \mathcal{L}_{n+1}[w]=\left(\frac{d^{3}}{d s^{3}}+4 w \frac{d}{d s}+2 w_{s}\right) \mathcal{L}_{n}[w], \quad n \geq 0 \text { with } \mathcal{L}_{0}[w]=\frac{1}{2}
$$

replacing $w=u_{s}-u^{2}$.

Examples

$$
\begin{array}{ll}
n=1: & u^{\prime \prime}-2 u^{3}=s u+\alpha_{1}, \\
n=2: & u^{\prime \prime \prime \prime}-10 u\left(u^{\prime}\right)^{2}-10 u^{2} u^{\prime \prime}+6 u^{5}=s u+\alpha_{2}, \\
n=3: & u^{\prime \prime \prime \prime \prime \prime}-14 u^{2} u^{\prime \prime \prime \prime}-56 u u^{\prime} u^{\prime \prime \prime}-70\left(u^{\prime}\right)^{2} u^{\prime \prime}-42 u\left(u^{\prime \prime}\right)^{2}+70 u^{4} u^{\prime \prime} \\
& +140 u^{3}\left(u^{\prime}\right)^{2}-20 u^{7}=s u+\alpha_{3} .
\end{array}
$$

And its Lax pair

[Flaschka - Newell, 1980, Clarkson - Joshi - Mazzocco, 2006] The n-th member of the Painlevé II hierarchy admits the Lax pair representation in terms of the differential 2×2 system

$$
\frac{\partial \Psi}{\partial \lambda}=M^{(n)} \Psi, \quad \frac{\partial \Psi}{\partial s}=L \Psi
$$

where the coefficients are

$$
\begin{aligned}
& L(\lambda, s)=-i \lambda \sigma_{3}+u \sigma_{1} \\
& M^{(n)}(\lambda, s)=\left(\sum_{j=0}^{2 n} A_{j}(i \lambda)^{j}-i t\right) \sigma_{3}+\sum_{j=0}^{2 n-1}\left(B_{j} \sigma_{+}+C_{j} \sigma_{-}\right)(i \lambda)^{j}+\frac{\alpha_{n}}{\lambda} \sigma_{1}
\end{aligned}
$$

with σ_{i} being the Pauli's matrices, $\sigma_{ \pm}$are the diagonal elementary matrices and A_{j}, B_{j}, C_{j} that are differential polynomials in u defined through closed formulae involving the Lenard polynomials.
This means that, for every n, the compatibility condition

$$
\frac{\partial M^{(n)}}{\partial t}-\frac{\partial L}{\partial \lambda}+M^{(n)} L-L M^{(n)}=0 \text { is equivalent to } \mathrm{PII}^{(n)}\left[\alpha_{n}\right]
$$

Back to multicritical random partitions

[Okunkov, 2001] On the set of all partitions consider the Schur measures

$$
\mathbb{P}_{S c .}(\lambda)=Z^{-1} s_{\lambda}\left[\theta_{1}, \ldots, \theta_{n}\right]^{2}
$$

where s_{λ} can be computed as

$$
s_{\lambda}\left[\theta_{1}, \ldots, \theta_{n}\right]=\operatorname{det}_{i, j} h_{\lambda_{i}-i+j}\left[\theta_{1}, \ldots, \theta_{n}\right]
$$

with $\sum_{k \geq 0} h_{k} z^{k}=\mathrm{e}^{v(z)}, v(z)=\sum_{i=1}^{n} \frac{\theta_{i}}{i} z^{i}$ and $Z=\mathrm{e}^{\sum_{i=1}^{n} \frac{\theta_{i}^{2}}{i}}$.
Remark For $n=1$ with $\mathbb{P}_{\text {P.PI. }}(\lambda)=\mathbb{P}_{\text {Sc. }}(\lambda)$ with $\theta_{1}=\theta$.
The probability distribution of the first part of such a random partition is given by certain Toeplitz determinants

$$
\mathbb{P}_{\text {Sc. }}\left(\lambda_{1} \leq k\right)=\mathrm{e}^{-\sum_{i}^{n} \hat{\theta}_{i}^{2} / i} D_{k-1}\left(\varphi^{(n)}\left[\hat{\theta}_{1}, \ldots, \hat{\theta}_{n}\right]\right)
$$

where the symbol is

$$
\varphi^{(n)}\left[\hat{\theta}_{1}, \ldots, \hat{\theta}_{n}\right](z)=\mathrm{e}^{w(z)}, w(z)=v(z)+v\left(z^{-1}\right), \theta_{i} \rightarrow \hat{\theta}_{i}=(-1)^{i+1} \theta_{i}
$$

Recall Harriet's talk

[Betea-Bouttier-Walsh , 2021] Let

$$
\theta_{i}=(-1)^{i+1} \frac{(n-1)!(n+1)!}{(n-i)!(n+i)!} \theta=(-1)^{i+1} \hat{\theta}_{i}
$$

then the limiting behavior of the distribution of the first part is described, for certain $b=b(n), d=d(n)$, by

$$
\lim _{\theta \rightarrow \infty} \mathbb{P}_{\theta}^{n}\left(\frac{\lambda_{1}-b \theta}{(\theta d)^{\frac{1}{2 n+1}}}<s\right)=F_{n}(s)
$$

Remark For $n=1$, it recovers the result of [Baik - Deift - Johannson, 1999], which gave the final answer to the Ulam problem for the limiting behavior of the lenght of the longest increasing subsequence of uniform random permutations.

Outline

(4) Higher order Tracy-Widom formula
(2) Toeplitz determinants in random partitions

(3) Connection with Orthogonal Polynomials on the Unit Circle

Our Toeplitz determinants

Let $\varphi=\varphi^{(n)}\left[\theta_{1}, \ldots, \theta_{n}\right](z)=\mathrm{e}^{w(z)}$ where

$$
w(z):=v(z)+v\left(z^{-1}\right), \quad v(z)=\sum_{i=1}^{n} \frac{\theta_{i}}{i} z^{i} z \in S^{1}
$$

Let $T_{k}(\varphi)$ being the k-th Toeplitz matrix associated to the symbol $\varphi(z)$

$$
T_{k}(\varphi)=\left(\begin{array}{ccccc}
\varphi_{0} & \varphi_{-1} & \cdots & \varphi_{-k+1} & \varphi_{-k} \\
\varphi_{1} & \varphi_{0} & \cdots & \varphi_{-k+2} & \varphi_{-k+1} \\
\vdots & \vdots & & \vdots & \vdots \\
\varphi_{k-1} & \varphi_{k-2} & \cdots & \varphi_{0} & \varphi_{-1} \\
\varphi_{k} & \varphi_{k-1} & \cdots & \varphi_{1} & \varphi_{0}
\end{array}\right)
$$

where for every $h \in \mathbb{Z}, \varphi_{h}$ is the h-th Fourier coefficient of $\varphi(z)$, namely

$$
\varphi_{h}=\int_{-\pi}^{\pi} e^{-i h \alpha} \varphi\left(e^{i \alpha}\right) \frac{d \alpha}{2 \pi}, \text { so that } \sum_{h \in \mathbb{Z}} \varphi_{h} z^{h}=\varphi(z)
$$

The Toeplitz determinants $D_{k}=D_{k}(\varphi)$ are defined as

$$
D_{k}:=\operatorname{det}\left(T_{k}(\varphi)\right)
$$

Borodin formula for $n=1$

[Borodin, Adler - Van Moerbeke, Baik, 2000] In the case $n=1$, for every $k \geq 1$ we have

$$
\frac{D_{k} D_{k-2}}{D_{k-1}^{2}}=1-x_{k}^{2}
$$

where x_{k} solves the so called discrete Painlevé I/ equation, which corresponds to the second order nonlinear difference equation

$$
\theta\left(x_{k+1}+x_{k-1}\right)\left(1-x_{k}^{2}\right)+k x_{k}=0
$$

with initial conditions $x_{0}=-1, x_{1}=\varphi_{1} / \varphi_{0}$.
Remark Borodin's method is based on the identification of D_{k} to some quantities related to the discrete Bessel determinantal point process \rightsquigarrow Mattia Cafasso's talk!

The global picture

Discrete

$\mathrm{n}=1$

$$
\begin{aligned}
& \mathbb{P}_{\text {PPI. }}\left(\lambda_{1} \leq k\right)=\mathrm{e}^{-\theta^{2}} D_{k-1}(\varphi) \text { with } \\
& \varphi=\varphi^{(1)}\left[\theta_{1}=\theta\right](z) \text { and } \\
& \quad D_{k-2} D_{k} / D_{k-1}^{2}=1-x_{k}^{2}
\end{aligned}
$$

with x_{k} solving

$$
\mathrm{dPII}: \theta\left(x_{k+1}+x_{k-1}\right)\left(1-x_{k}^{2}\right)+k x_{k}=0
$$

$n>1$
$\mathbb{P}_{\text {Sc. }}\left(\lambda_{1} \leq k\right)=\mathrm{e}^{-\sum_{i}^{N} \hat{\theta}_{i}^{2} / i} D_{k-1}(\varphi)$ with $\varphi=\varphi^{(n)}\left[\hat{\theta}_{1}, \ldots, \hat{\theta}_{n}\right](z)$ and
what is the recursion relation for D_{k} ?

Continuous

$$
\lim _{\theta \rightarrow \infty} \mathbb{P}_{\text {PPI. }}\left(\frac{\lambda_{1}-2 \theta}{\theta^{\frac{1}{3}}} \leq s\right)=F(s)
$$

and

$$
\partial_{s}^{2} \log F(s)=-u^{2}(s)
$$

with u solving

$$
\text { RI: } u^{\prime \prime}(s)=2 u^{3}(s)+s u(s)
$$

$\lim _{\theta \rightarrow \infty} \mathbb{P}_{\text {Sc. }}\left(\frac{\lambda_{1}-b \theta}{(d \theta)^{\frac{1}{2 n+1}}} \leq s\right)=F_{n}(s)$ and
$\partial_{s}^{2} \log F_{n}(s)=-u^{2}\left((-1)^{n+1} s\right)$ with u solving the n-th higher order analogue of PII.

Final statement

Theorem (Chouteau - T., 2022)

For any fixed $n \geq 1$, for the Toeplitz determinants $D_{k}, k \geq 1$, we have

$$
\frac{D_{k} D_{k-2}}{D_{k-1}^{2}}-1=-x_{k}^{2}
$$

where now x_{k} solves the $2 n$ order nonlinear difference equation

$$
k x_{k}+\left(v_{k}+v_{k} \text { Perm }_{k}-2 x_{k} \Delta^{-1}\left(x_{k}-(\Delta+I) x_{k} \text { Perm }_{k}\right)\right) L^{n}(0)=0
$$

where L is a discrete recursion operator that acts as follows

$$
L\left(u_{k}\right):=\left(x_{k+1}\left(2 \Delta^{-1}+I\right)\left((\Delta+I) x_{k} \operatorname{Perm}_{k}-x_{k}\right)+v_{k+1}(\Delta+I)-x_{k} x_{k+1}\right) u_{k},
$$

and $L(0)=\theta_{n} x_{k+1}$. Here $v_{k}:=1-x_{k}^{2}, \Delta$ denotes the difference operator $\Delta: u_{k} \rightarrow u_{k+1}-u_{k}$ and Perm ${ }_{k}$ is the transformation

$$
\begin{array}{rccc}
\text { Perm }_{k}: & \mathbb{C}\left[\left(x_{j}\right)_{j \in[[0,2 k]]}\right] & \longrightarrow & \mathbb{C}\left[\left(x_{j}\right)_{j \in[[0,2 k]]}\right] \\
& P\left(\left(x_{k+j}\right)_{-k \leqslant j \leqslant k}\right) & \longmapsto & P\left(\left(x_{k-j}\right)_{-k \leqslant j \leqslant k}\right) .
\end{array}
$$

The first equations of the hierarchy

$$
\begin{aligned}
n=1: & k x_{k}+\theta_{1}\left(x_{k+1}+x_{k-1}\right)\left(1-x_{k}^{2}\right)=0, \leftarrow \text { discrete Painlevé II equation } \\
n=2: & k x_{k}+\theta_{1}\left(1-x_{k}^{2}\right)\left(x_{k+1}+x_{k-1}\right) \\
& +\theta_{2}\left(1-x_{k}^{2}\right)\left(x_{k+2}\left(1-x_{k+1}^{2}\right)+x_{k-2}\left(1-x_{k-1}^{2}\right)-x_{k}\left(x_{k+1}+x_{k-1}\right)^{2}\right)=0, \\
n=3: & k x_{k}+\theta_{1}\left(1-x_{k}^{2}\right)\left(x_{k+1}+x_{k-1}\right) \\
& +\theta_{2}\left(1-x_{k}^{2}\right)\left(x_{k+2}\left(1-x_{k+1}^{2}\right)+x_{k-2}\left(1-x_{k-1}^{2}\right)-x_{k}\left(x_{k+1}+x_{k-1}\right)^{2}\right) \\
& +\theta_{3}\left(1-x_{k}^{2}\right)\left(x_{k}^{2}\left(x_{k+1}+x_{k-1}\right)^{3}+x_{k+3}\left(1-x_{k+2}^{2}\right)\left(1-x_{k+1}^{2}\right)+x_{k-3}\left(1-x_{k-2}^{2}\right)\left(1-x_{k-1}^{2}\right)\right) \\
& +\theta_{3}\left(1-x_{k}^{2}\right)\left(-2 x_{k}\left(x_{k+1}+x_{k-1}\right)\left(x_{k+2}\left(1-x_{k+1}^{2}\right)+x_{k-2}\left(1-x_{k-1}^{2}\right)\right)\right) \\
& +\theta_{3}\left(1-x_{k}^{2}\right)\left(-x_{k-1} x_{k-2}^{2}\left(1-x_{k-1}^{2}\right)-x_{k+1} x_{k+2}^{2}\left(1-x_{k+1}^{2}\right)\right) \\
& +\theta_{3}\left(1-x_{k}^{2}\right)\left(-x_{k+1} x_{k-1}\left(x_{k+1}+x_{k-1}\right)\right)=0 .
\end{aligned}
$$

Remark Similar discrete equations appeared previously in [Periwal-Schewitz, 1990] in the study of some unitary matrix integrals.

Outline

(7) Higher order Tracy-Widom formula

2 Toeplitz determinants in random partitions
(3) Connection with Orthogonal Polynomials on the Unit Circle

4 Continuous limit

Orthogonal Polynomials on the Unit Circle

We consider the measure for $z=\mathrm{e}^{i \alpha} \in S^{1}$ given by

$$
\mathrm{d} \mu(\alpha)=\varphi\left(\mathrm{e}^{i \alpha}\right) \frac{\mathrm{d} \alpha}{2 \pi}=\mathrm{e}^{w\left(\mathrm{e}^{i \alpha}\right)} \frac{\mathrm{d} \alpha}{2 \pi} .
$$

The family $\left\{p_{k}(z)\right\}_{k \in \mathbb{N}}$ of orthogonal polynomials on the unitary circle (OPUC) w.r.t. the measure is given by

$$
p_{k}(z)=\kappa_{k} z^{k}+\ldots \kappa_{0}, \quad \kappa_{k}>0
$$

such that the following relation holds for any index k, h

$$
\int_{-\pi}^{\pi} \overline{p_{k}\left(e^{i \alpha}\right)} p_{h}\left(e^{i \alpha}\right) \frac{\mathrm{d} \mu(\alpha)}{2 \pi}=\delta_{k, h} .
$$

The analogue monic orthogonal polynomials $\pi_{k}(z)$ are $p_{k}(z)=\kappa_{k} \pi_{k}(z)$.

Relation with the Toeplitz determinants

A very well known formula of $p_{k}(z)$ in terms of the Toeplitz determinants D_{k} gives

$$
p_{k}(z)=\frac{1}{\sqrt{D_{k} D_{k-1}}} \operatorname{det}\left(\begin{array}{ccccc}
\varphi_{0} & \varphi_{-1} & \cdots & \varphi_{-k+1} & \varphi_{-k} \\
\varphi_{1} & \varphi_{0} & \cdots & \varphi_{-k+2} & \varphi_{-k+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\varphi_{k-1} & \varphi_{k-2} & \cdots & \varphi_{0} & \varphi_{-1} \\
1 & z & \cdots & z^{k-1} & z^{k}
\end{array}\right), k \geq 1,
$$

from which in particular one deduces that the leading coefficient of $p_{k}(z)$ is related to the ratio of consecutive Toeplitz determinants as

$$
\frac{D_{k-1}}{D_{k}}=\kappa_{k}^{2}
$$

Riemann-Hilbert problem associated to OPUC

For any fixed $k \geq 0$, the function $Y(z):=Y\left(z, k ; \theta_{i}\right): \mathbb{C} \rightarrow \mathrm{GL}(2, \mathbb{C})$ has the following properties
(1) $Y(z)$ is analytic for every $z \in \mathbb{C} \backslash S^{1}$;
(2) $Y(z)$ has continuous boundary values $Y_{ \pm}(z)$ are related for all $z \in S^{1}$ through

$$
Y_{+}(z)=Y_{-}(z) J_{Y}(z), \text { with } J_{Y}(z)=\left(\begin{array}{cc}
1 & z^{-k} e^{w(z)} \\
0 & 1
\end{array}\right)
$$

(3) $Y(z)$ is normalized at ∞ as

$$
Y(z) \sim\left(I+\sum_{j=1}^{\infty} \frac{Y_{j}\left(k, \theta_{i}\right)}{z^{j}}\right) z^{k \sigma_{3}}, \quad z \rightarrow \infty
$$

where σ_{3} denotes the Pauli's matrix $\sigma_{3}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

Solution of this R-H problem

[Baik - Deift - Johansson, 1999] The R-H problem admits a unique solution $Y(z)$ written as

$$
Y(z)=\left(\begin{array}{cc}
\pi_{k}(z) & \mathcal{C}\left(y^{-k} \pi_{k}(y) \mathrm{e}^{w(y)}\right)(z) \\
-\kappa_{k-1}^{2} \pi_{k-1}^{*}(z) & -\kappa_{k-1}^{2} \mathcal{C}\left(y^{-k} \pi_{k-1}^{*}(y) \mathrm{e}^{w(k)}\right)(z)
\end{array}\right)
$$

where $\pi_{k-1}^{*}(z)$ is defined as the polynomial of the same degree of $\pi_{k-1}(z)$ such that $\pi_{k-1}^{*}(z):=z^{k} \overline{\pi_{k-1}\left(\bar{z}^{-1}\right)}$ and $(\mathcal{C f}(y))(z)$ is the Cauchy transform of f

$$
(\mathcal{C} f(y))(z):=\frac{1}{2 \pi i} \int_{S^{1}} \frac{f(y)}{y-z} \mathrm{~d} y
$$

Moreover, $\operatorname{det}(Y(z)) \equiv 1$.
Remark This is an extension of the R-H approach to orthogonal polynomials on the real line formulated by Fokas-Its-Kitaev (1991).

Formula for the Toeplitz determinants

For every fixed $k \geq 0$, the unique solution $Y(z)$ of the R-H problem evaluated in $z=0$ gives

$$
Y\left(0, k ; \theta_{i}\right)=\left(\begin{array}{cc}
x_{k} & \kappa_{k}^{-2} \\
-\kappa_{k-1}^{2} & x_{k}
\end{array}\right)
$$

with $x_{k}:=\pi_{k}(0)$ and κ_{k} the leading coefficient of $p_{k}(z)$.
Remark Since det $Y\left(0, k ; \theta_{i}\right)=1$ for every $k \geq 1$ we have

$$
\frac{\kappa_{k-1}^{2}}{\kappa_{k}^{2}}=1-x_{k}^{2}
$$

It follows directly that for every $k \geq 1$ we have the recursion for the Toeplitz determinats

$$
\frac{D_{k-2} D_{k}}{D_{k-1}^{2}}=1-x_{k}^{2} .
$$

The new Lax pair for the dPII hierarchy

Now we construct the function

$$
\Psi\left(z, k ; \theta_{i}\right):=\left(\begin{array}{cc}
1 & 0 \\
0 & \kappa_{k}^{-2}
\end{array}\right) Y\left(z, k ; \theta_{j}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & z^{k}
\end{array}\right) \mathrm{e}^{w(z) \frac{\sigma_{3}}{2}} .
$$

Now $\Psi(z, k)$ solves the following system

$$
\Psi(z, k+1)=U(z, k) \Psi(z, k), \quad \partial_{z} \Psi(z, k)=T(z, k) \Psi(z, k)
$$

with

$$
\begin{gathered}
U(z, k):=\left(\begin{array}{cc}
z+x_{k} x_{k+1} & -x_{k+1} \\
-\left(1-x_{k+1}^{2}\right) x_{k} & 1-x_{k+1}^{2}
\end{array}\right) \\
T(z, k):=T_{1}(k) z^{n-1}+T_{2}(k) z^{n-2}+\ldots+T_{2 n+1}(k) z^{-n-1}
\end{gathered}
$$

where $T_{1}(n)=\frac{\theta_{N}}{2} \sigma_{3}$ and the others $T_{\ell}(k)$ are obtained in terms of $x_{k-\ell}, \ldots, x_{k+\ell}$ explicitely, with x_{k} solving the n-th equation of the discrete Painlevé II hierarchy.

Remark This comes from the compatibility condition of the system for Ψ, obtained by exchanging the difference and differential operators, namely the condition

$$
\sigma_{+}=T(z, k+1) U(z, k)-U(z, k) T(z, k)
$$

Examples $n=1,2$

\rightsquigarrow For $n=1$ the matrix $T(z, k)$ is

$$
T(z, k)=\frac{\theta_{1}}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\frac{1}{z}\left(\begin{array}{cc}
n & -\theta_{1} x_{k+1} \\
-\theta_{1} v_{k} x_{k-1} & 0
\end{array}\right)+\frac{\theta_{1}}{z^{2}}\left(\begin{array}{cc}
\frac{1}{2}-x_{k}^{2} & x_{k} \\
v_{k} x_{k} & x_{k}^{2}-\frac{1}{2}
\end{array}\right)
$$

and x_{k} solves the dPII equation.
\rightsquigarrow For $n=2$ the matrix $T(z, k)$ is

$$
\left.\begin{array}{rl}
T(z, k) & =z \frac{\theta_{2}}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\left(\begin{array}{cc}
\frac{\theta_{1}}{2} & -\theta_{2} x_{k+1} \\
-\theta_{2} x_{k-1} v_{k} & -\frac{\theta_{1}}{2}
\end{array}\right)+ \\
& \frac{1}{z}\left(\begin{array}{cc}
k-\theta_{2} x_{k-1} x_{k+1} v_{k} & -\theta_{1} x_{k+1}-\theta_{2}\left(v_{k+1} x_{k+2}-x_{k} x_{k+1}^{2}\right) \\
\left(-\theta_{1} x_{k-1}-\theta_{2}\left(v_{k-1} x_{k-2}-x_{k} x_{k-1}^{2}\right)\right)
\end{array}\right) v_{k} \\
& +\frac{1}{z^{2}}\left(\begin{array}{cc}
-\theta_{2} v_{k}\left(x_{k} x_{k-1}+x_{k} x_{k+1}\right)+\frac{\theta_{1}}{2}\left(v_{k}-x_{k}^{2}\right) & \theta_{2} x_{k-1} x_{k+1} v_{k} \\
-\theta_{2}\left(v_{k} x_{k+1}+x_{k}^{2} x_{k-1}\right) v_{k} & -\theta_{2}\left(v_{k} x_{k-1}+x_{k}^{2} x_{k+1}\right) \\
& +\frac{\theta_{2}}{z^{3}}\left(\begin{array}{cc}
\frac{1}{2}-x_{k}^{2} & x_{k} \\
v_{k} x_{k} & x_{k}^{2}-\frac{1}{2}
\end{array}\right)
\end{array}, \quad x_{k} x_{k-1}+x_{k} x_{k+1}\right)-\frac{\theta_{1}}{2}\left(v_{k}-x_{k}^{2}\right)
\end{array}\right)
$$

and x_{k} solves the second equation of the dPII hierarachy.
Here $v_{k}=1-x_{k}^{2}$.

Cresswell-Joshi Lax pair

[Cresswell - Joshi, 1998] defined the discrete Painlevé II hierarchy as a sequence of discrete nonlinear equations of order $2 n$ for each n for x_{k}, starting with the discrete Painlevé II and admitting a continuous limit to the classical Painlevé II hierarchy.

They introduced it as the compatibility condition of the system

$$
\Phi(z, k+1)=L(z, k) \Phi(z, k) \quad \partial_{z} \Phi(z, k)=M(z, k) \Phi(z, k)
$$

i.e. as the equation

$$
\frac{\partial}{\partial z} L(z, k)=M(z, k+1) L(z, k)-L(z, k) M(z, k)
$$

where $L(z, k):=\left(\begin{array}{cc}z & x_{k} \\ x_{k} & 1 / z\end{array}\right)$ and $M(z, k):=\left(\begin{array}{cc}A_{k}(z) & B_{k}(z) \\ C_{k}(z) & -A_{k}(z)\end{array}\right)$ with A_{k}, B_{k} and C_{k} written in integer powers of z (from z^{n} to z^{-n}) with coefficients depending on x_{k}.

Remark The relation with the Cresswell-Joshi Lax pair is given by

$$
\Phi(z, k):=\sigma_{3}\left(\begin{array}{cc}
z^{-k+3 / 2} & 0 \\
0 & z^{-k+1 / 2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-x_{k-1} & 1
\end{array}\right) \Psi\left(z^{2}, k-1\right) .
$$

Outline

(4) Higher order Tracy-Widom formula

2 Toeplitz determinants in random partitions
(3) Connection with Orthogonal Polynomials on the Unit Circle

4 Continuous limit

The first continuous limit

Main point

The Toeplitz determinants satisfy a recursion relation which is the discrete analogue of the generalized Tracy-Widom formula for the higher order Airy Fredholm determinants.

Recall the B-B-W(=B-D-J) result for $n=1: \lim _{\theta \rightarrow \infty} \mathbb{P}_{\text {Sc. }}\left(\frac{\lambda_{1}-2 \theta}{\theta^{1 / 3}} \leq s\right)=F(s)$. In the limit for $\theta \rightarrow \infty$, taking $k=s \theta^{1 / 3}+2 \theta$ or $s=(k-2 \theta) \theta^{-1 / 3}$

$$
\begin{array}{cc}
\frac{D_{k} D_{k-2}}{D_{k-1}^{2}}-1=-x_{k}^{2}, & x_{k+1}+x_{k-1}=-\frac{k x_{k}}{\theta\left(1-x_{k}^{2}\right)} \\
B-B-w \downarrow x_{k}=(-1)^{k} \theta^{-1 / 3} u(s) & \downarrow x_{k}=(-1)^{k} \theta^{-1 / 3} u(s) \\
\partial_{s}^{2} \log F(s)=-u^{2}(s), & u^{\prime \prime}(s)=2 u^{3}(s)+t u(s)
\end{array}
$$

Painlevé II equation

This recovers the Tracy-Widom formula (1994) for $F(s)=\operatorname{det}\left(1-\left.\mathcal{K}^{\mathrm{Ai}}\right|_{(s,+\infty)}\right)$.

The other continuous limits

Recall the B-B-W result for $n=2: \lim _{\theta \rightarrow \infty} \mathbb{P}_{\text {Sc. }}\left(\frac{\lambda_{1}-\frac{3}{2} \theta}{\left(4^{-1} \theta\right)^{1 / 5}} \leq s\right)=F_{2}(s)$. In the limit for $\theta \rightarrow \infty$, taking $k=s\left(\frac{\theta}{4}\right)^{1 / 5}+\frac{3}{2} \theta\left(\right.$ or $\left.s=\left(k-\frac{3}{2} \theta\right) \theta^{-\frac{1}{5}} 4 \frac{1}{5}\right)$

$$
\frac{D_{k} D_{k-2}}{D_{k-1}^{2}}-1=-x_{k}^{2}, \quad k x_{k}+\theta_{1} v_{k}\left(x_{k+1}+x_{k-1}\right)
$$

$$
+\theta_{2} v_{k}\left(x_{k+2} v_{k+1}+x_{k-2} v_{k-1}-x_{k}\left(x_{k+1}+x_{k-1}\right)^{2}\right)=0
$$

$$
\begin{array}{cc}
\text { B-B-W } \downarrow x_{k}=(-1)^{k}\left(\frac{\theta}{4}\right)^{-1 / 5} u(s) & \downarrow x_{k}=(-1)^{k}\left(\frac{\theta}{4}\right)^{-1 / 5} u(s) \theta_{1}=\theta, \theta_{2}=\frac{\theta}{4} \\
\partial_{s}^{2} \log F_{2}(s)=-u^{2}(s), & \frac{u^{\prime \prime \prime \prime}-10 u\left(u^{\prime}\right)^{2}-10 u^{2} u^{\prime \prime}+6 u^{5}=-s u}{\text { 2nd eq. of the Painlevé II hierarchy }}
\end{array}
$$

which recovers the generalized Tracy-Widom formula for the higher order Airy kernels [Cafasso-Claeys-Girotti, 2019] for $n=2$. And so on ...

Remark This gives an alternative continuous limit w.r.t. the one proposed by Cresswell - Joshi.

Thank you!

